Skip to main content
Log in

Hydrothermal fabrication of amino functionalized lotus seedpods-derived biochar for efficient removal of uranium (VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, amino functionalized lotus seedpods-derived biochar (LSBC-NH2) was prepared for the removal of uranium (VI) from aqueous solution by using natural lotus seedpods as raw material and urea as nitrogen source through hydrothermal method. LSBC-NH2 showed a very thin sheet structure with rough porous surface and cluster structure and good thermal stability. Kinetics, isotherms and thermodynamics studies demonstrated that the adsorption of uranium (VI) by LSBC-NH2 was a spontaneous, endothermic, and single-layer chemisorption process, and the maximum uranium (VI) adsorption capacity on LSBC-NH2 could reach 367.99 mg g−1. Adsorption mechanism showed that the adsorption process of LSBC-NH2 for uranium (VI)was involved in amino, carboxyl and hydroxyl groups in LSBC-NH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2:1621–1634

    Article  CAS  Google Scholar 

  2. Brugge D, deLemos JL, Oldmixon B (2005) Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev Environ Health 20:177–194

    Article  CAS  PubMed  Google Scholar 

  3. Zhang H, Liu W, Li A, Zhang D, Li X, Zhai F, Chen L, Chen L, Wang Y, Wang S (2019) Three mechanisms in one material: uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew Chem Int Ed Engl 58:16110–16114

    Article  CAS  PubMed  Google Scholar 

  4. Ghasemi TM, Keshtkar AR, Safdari SJ (2017) Uranium membrane separation from binary aqueous solutions of UO22+-K+ and UO22+-Ca2+ by the nanofiltration process. Sep Sci Technol 52:1095–1105

    Article  Google Scholar 

  5. Foster RI, Amphlett JTM, Kim K-W, Kerry T, Lee K, Sharrad CA (2020) SOHIO process legacy waste treatment: uranium recovery using ion exchange. J Ind Eng Chem 81:144–152

    Article  CAS  Google Scholar 

  6. Chen X, Xia H, Lv J, Liu Y, Li Y, Xu L, Xie C, Wang Y (2023) (2023) Magnetic hydrothermal biochar for efficient enrichment of uranium(VI) by embedding Fe3O4 nanoparticles on bamboo materials from “one-can” strategy. Colloids Surf A 658:130748

    Article  CAS  Google Scholar 

  7. Arica TA, Balci FM, Balci S, Arica MY (2022) Highly Porous Poly(o-Phenylenediamine) Loaded Magnetic Carboxymethyl Cellulose Hybrid Beads for Removal of Two Model Textile Dyes. Fibers Polym 23:2838–2854

    Article  CAS  Google Scholar 

  8. Guo L, Peng L, Li J, Zhang W, Shi B (2023) Highly efficient U(VI) capture from nuclear wastewater by an easily synthesized lignin-derived biochar: adsorption performance and mechanism. Environ Res 223:115416

    Article  CAS  PubMed  Google Scholar 

  9. Huang Q, Song S, Chen Z, Hu B, Chen J, Wang X (2019) Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar 1:45–73

    Article  Google Scholar 

  10. Dai M-H, Wu S-C (1975) Adsorption of uranium from dilute aqueous solution on inorganic adsorbents. J Sep Sci 10:633–638

    CAS  Google Scholar 

  11. Kim J, Tsouris C, Oyola Y, Janke CJ, Mayes RT, Dai S, Gill G, Kuo L-J, Wood J, Choe K-Y, Schneider E, Lindner H (2014) Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind Eng Chem Res 53:6076–6083

    Article  CAS  Google Scholar 

  12. Bayramoglu G, Arica MY (2017) Polyethylenimine and tris(2-aminoethyl)amine modified p(GA–EGMA) microbeads for sorption of uranium ions: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 312:293–303

    Article  CAS  Google Scholar 

  13. Bayramoglu G, Arica MY (2019) Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution. Chem Eng Res Des 147:146–159

    Article  CAS  Google Scholar 

  14. Ma F, Gui Y, Liu P, Xue Y, Song W (2020) (2020) Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation. Chem Eng J 390:124597

    Article  CAS  Google Scholar 

  15. Mezaguer M, Kamel N.e.h., Lounici H. and Kamel Z. (2012) Characterization and properties of Pleurotus mutilus fungal biomass as adsorbent of the removal of uranium(VI) from uranium leachate. J Radioanal Nucl Chem 295:393–403

    Article  Google Scholar 

  16. Bayramoglu G, Yakup AM (2015) Amidoxime functionalized Trametes trogii pellets for removal of uranium(VI) from aqueous medium. J Radioanal Nucl Chem 307:373–384

    Article  Google Scholar 

  17. Celikbicak O, Bayramoglu G, Acikgoz-Erkaya I, Arica MY (2021) Aggrandizement of uranium (VI) removal performance of Lentinus concinnus biomass by attachment of 2,5-diaminobenzenesulfonic acid ligand. J Radioanal Nucl Chem 328:1085–1098

    Article  CAS  Google Scholar 

  18. Abbasi WA, Streat M (1994) Adsorption of uranium from aqueous solutions using activated carbon. Sep Sci Technol 29:1217–1230

    Article  CAS  Google Scholar 

  19. Wu J, Tian K, Wang J (2018) Adsorption of uranium (VI) by amidoxime modified multiwalled carbon nanotubes. Prog Nucl Energy 106:79–86

    Article  CAS  Google Scholar 

  20. Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W (2012) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546

    Article  CAS  Google Scholar 

  21. Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Xing B, Ding Y, Han X, Wang S (2020) A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour Technol 312:123614

    Article  CAS  PubMed  Google Scholar 

  23. Chen XC, Wang Y, Lv JQ, Feng ZH, Liu YT, Xia HT, Li Y, Wang CF, Zeng K, Liu Y, Yuan DZ (2022) Simple one-pot synthesis of manganese dioxide modified bamboo-derived biochar composites for uranium(vi) removal. New J Chem 46:14427–14438

    Article  CAS  Google Scholar 

  24. Liu Y, Wang Y, Xia H, Wang Q, Chen X, Lv J, Li Y, Zhao J, Liu Y, Yuan D (2022) Low-cost reed straw-derived biochar prepared by hydrothermal carbonization for the removal of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 331:3915–3925

    Article  CAS  Google Scholar 

  25. Wu L-L, Cao Y-S, Li Z-P, Hu L, Zhang Z-J, Yu Q (2020) Preparation of areca residue activated carbon composite and its adsorption performance for uranium (VI) in wastewater. Desalin Water Treat 182:144–154

    Article  CAS  Google Scholar 

  26. Zeng H, Zeng H, Zhang H, Shahab A, Zhang K, Lu Y, Nabi I, Naseem F, Ullah H (2021) Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. J Cleaner Prod 286:124964

    Article  CAS  Google Scholar 

  27. Sun Y, Yuan N, Ge Y, Ye T, Yang Z, Zou L, Ma W, Lu L (2022) Adsorption behavior and mechanism of U(VI) onto phytic Acid-modified Biochar/MoS2 heterojunction materials. Sep Purif Technol 294:121158

    Article  CAS  Google Scholar 

  28. Zhou YZ, Li Y, Wang XL, Liu DX, Liu DB (2020) Preparation of amidoxime functionalized titanate nanosheets for efficient extraction of uranium from aqueous solution. J Solid State Chem 290:121562

    Article  CAS  Google Scholar 

  29. Zhu JH, Liu Q, Li ZS, Liu JY, Zhang HS, Li RM, Wang J (2018) Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes. J Hazard Mater 353:9–17

    Article  CAS  PubMed  Google Scholar 

  30. Chen LL, Zhao DL, Chen SH, Wang XB, Chen CL (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J Colloid Interface Sci 472:99–107

    Article  CAS  PubMed  Google Scholar 

  31. Lingamdinne LP, Choi JS, Angaru GKR, Karri RR, Yang JK, Chang YY, Koduru JR (2022) Magnetic-watermelon rinds biochar for uranium-contaminated water treatment using an electromagnetic semi-batch column with removal mechanistic investigations. Chemosphere 286:131776

    Article  CAS  PubMed  Google Scholar 

  32. Xu Z, Xing Y, Ren A, Ma D, Li Y, Hu S (2020) Study on adsorption properties of water hyacinth-derived biochar for uranium (VI). J Radioanal Nucl Chem 324:1317–1327

    Article  CAS  Google Scholar 

  33. Yaman M, Demirel MH (2021) Synthesis and Characterization of Activated Carbon from Biowaste-Peanut Shell and Application to Preconcentration/Removal of Uranium. Bull Environ Contam Toxicol 106:385–392

    Article  CAS  PubMed  Google Scholar 

  34. Liao J, Ding L, Zhang Y, Zhu W (2022) Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. J Hazard Mater 423:127190

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, Liu T, Tang J, Zheng Z, Wang H, Shao Q, Chen G, Li Z, Chen Y, Zhu J, Feng T (2018) Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures. Environ Sci Pollut Res Int 25:11854–11866

    Article  CAS  PubMed  Google Scholar 

  36. Lu S-Y, Jin M, Zhang Y, Niu Y-B, Gao J-C, Li CM (2018) Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv Energy Mater 8:1702545

    Article  Google Scholar 

  37. Liu Y, Gao Q, Pu S, Wang H, Xia K, Han B, Zhou C (2019) Carboxyl-functionalized lotus seedpod A highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb2+ ions from aqueous solution. Colloids Surf A 568:391–401

    Article  CAS  Google Scholar 

  38. Sing KJC, Physicochemical SA, Aspects E (2001) The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf A 187:3–9

    Article  Google Scholar 

  39. Zhang Y, Yue X, Xu W, Zhang H, Li F (2019) Amino modification of rice straw-derived biochar for enhancing its cadmium (II) ions adsorption from water. J Hazard Mater 379:120783

    Article  CAS  PubMed  Google Scholar 

  40. Ye T, Huang B, Wang Y, Zhou L, Liu Z (2020) Rapid removal of uranium(VI) using functionalized luffa rattan biochar from aqueous solution. Colloids Surf A 606:125480

    Article  CAS  Google Scholar 

  41. Elkhalifa S, Parthasarathy P, Mackey HR, Al-Ansari T, Elhassan O, Mansour S, McKay G (2022) Biochar development from thermal TGA studies of individual food waste vegetables and their blended systems. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02441-0

    Article  Google Scholar 

  42. Shen J, Cao F, Liu S, Wang C, Chen R, Chen K (2021) Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal composite. Front Chem Sci Eng 16:408–419

    Article  Google Scholar 

  43. Yadav S, Srivastava V, Banerjee S, Weng C-H, Sharma YC (2013) Adsorption characteristics of modified sand for the removal of hexavalent chromium ions from aqueous solutions: Kinetic, thermodynamic and equilibrium studies. CATENA 100:120–127

    Article  CAS  Google Scholar 

  44. Poots VJP, McKay G, Healy JJ (1976) The removal of acid dye from effluent using natural adsorbents—I peat. Water Res 10:1061–1066

    Article  CAS  Google Scholar 

  45. Albayari M, Nazal MK, Khalili FI, Nordin N, Adnan R (2021) Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water. J Radioanal Nucl Chem 328:669–678

    Article  CAS  Google Scholar 

  46. Cai C, Wang R, Liu S, Yan X, Zhang L, Wang M, Tong Q, Jiao T (2020) Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities. Colloids Surf A 589:124468

    Article  CAS  Google Scholar 

  47. Galhoum AA, Eisa WH, El-Tantawy E-S, Tolba AA, Shalaby ZM, Mohamady SI, Muhammad SS, Hussien SS, Akashi T, Guibal E (2020) A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl methacrylate)-magnetic nanocomposite - Application to uranium sorption from ore leachate. Environ Pollut 264:114797

    Article  CAS  PubMed  Google Scholar 

  48. Jiang X, Wang H, Wang Q, Hu E, Duan Y (2020) Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium. J Cleaner Prod 247:119162

    Article  CAS  Google Scholar 

  49. Ai L, Luo X, Lin X, Zhang S (2013) Biosorption behaviors of uranium (VI) from aqueous solution by sunflower straw and insights of binding mechanism. J Radioanal Nucl Chem 298:1823–1834

    Article  CAS  Google Scholar 

  50. Li MX, Liu HB, Chen TH, Dong C, Sun YB (2019) Synthesis of magnetic biochar composites for enhanced uranium (VI) adsorption. Sci Total Environ 651:1020–1028

    Article  CAS  PubMed  Google Scholar 

  51. Zhang YA, Ye TZ, Wang Y, Zhou LM, Liu ZR (2021) Adsorption of uranium(VI) from aqueous solution by phosphorylated luffa rattan activated carbon. J Radioanal Nucl Chem 327:1267–1275

    Article  CAS  Google Scholar 

  52. Sabanovic E, Muhic-Sarac T, Nuhanovic M, Memic M (2019) Biosorption of uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equlibrium and batch studies. J Radioanal Nucl Chem 319:425–435

    Article  CAS  Google Scholar 

  53. Morsy A, Taha MH, Saeed M, Waseem A, Riaz MA, Elmaadawy MM (2019) Isothermal, kinetic, and thermodynamic studies for solid-phase extraction of uranium (VI) via hydrazine-impregnated carbon-based material as efficient adsorbent. Nucl Sci Tech 30:167

    Article  CAS  Google Scholar 

  54. Cheira MF, Mira HI, Sakr AK, Mohamed SA (2019) Adsorption of U(VI) from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments. Nucl Sci Tech 30:156

    Article  Google Scholar 

  55. Nazal MK, Al-Bayyari M, Khalili FI (2019) Salvadora Persica branches biomass adsorbent for removal of uranium(VI) and thorium(IV) from aqueous solution: kinetics and thermodynamics study. J Radioanal Nucl Chem 321:985–996

    Article  CAS  Google Scholar 

  56. Li N, Yin ML, Tsang DCW, Yang ST, Liu J, Li X, Song G, Wang J (2019) Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: a comparison between raw and modified biochar. Sci Total Environ 697:134115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21966005) and Jiangxi Provincial Natural Science Foundation (20224BAB203005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Xia, H., Ren, Q. et al. Hydrothermal fabrication of amino functionalized lotus seedpods-derived biochar for efficient removal of uranium (VI). J Radioanal Nucl Chem 332, 4075–4087 (2023). https://doi.org/10.1007/s10967-023-09094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09094-x

Keywords

Navigation