Skip to main content
Log in

Study on adsorption properties of water hyacinth-derived biochar for uranium (VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The adsorption capacity of the water hyacinth-derived biochar on U(VI) was investigated in this study. The as-prepared sample was characterized by methods of SEM, XRD, XPS, FT-IR and BET. Functional groups on the biochar surface could undergo complexation with U(VI). Effects of adsorption dose, temperature, contact time, solution pH and ionic strength were studied by static batch experiments. Results show that the adsorption could be better fitted by the pseudo-second-order kinetic equation and Langmuir model. The solution pH has a great impact on the U(VI) adsorption, while the ionic strength exerts no significant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Massarin S, Beaudouin R, Zeman F, Floriani M, Gilbin R, Alonzo F, Pery ARR (2011) Environ Sci Technol 45:4151–4158

    CAS  PubMed  Google Scholar 

  2. Zielinski RA, Orem WH, Simmons KR, Bohlen PJ (2006) Water Air Soil Pollut 176:163–183

    CAS  Google Scholar 

  3. Li Z, Cai Z, Wu Y, Meng X, Zhang D (2018) Materials 11:607

    PubMed Central  Google Scholar 

  4. Kitahara K, Numako C, Terada Y, Nitta K, Shimada Y, Homma-Takeda S (2017) J Synchrotron Radiat 24:456–462

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hao Y, Gao R, Lu B, Ran Y, Yang Z, Liu J, Li R (2018) Toxicol Appl Pharm 343:62–70

    CAS  Google Scholar 

  6. Laskorin BN, Smtrnova NM (1962) Atom Energy 10:340–347

    Google Scholar 

  7. Ohnuki T, Kozai N, Samadfam M, Yasuda R, Yamamoto S, Naramoto H, Murakami T (2004) Chem Geol 211:1–14

    CAS  Google Scholar 

  8. Gamare JS, Chetty KV, Mukerjee SK, Kannan S (2009) Anal Sci 25:1167–1170

    CAS  PubMed  Google Scholar 

  9. Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X (2016) Environ Sci Technol 50:7290–7304

    CAS  PubMed  Google Scholar 

  10. Hu J, Shao D, Chen C, Sheng G, Ren X, Wang X (2011) J Hazard Mater 185:463–471

    CAS  PubMed  Google Scholar 

  11. Lodo MJ, Diaz LJL (2019) Key Eng Mater 814:451–456

    Google Scholar 

  12. Guilhen SN, Masek O, Ortiz N, Izidoro JC, Fungaro DA (2019) Biomass Bioenergy 122:381–390

    CAS  Google Scholar 

  13. Kosorukov AA, Pshinko GN, Puzyrnaya LN, Kobets SA (2013) J Chem Technol 35:104–111

    Google Scholar 

  14. Oshita K, Sabarudin A, Takayanagi T, Oshima M, Motomizu S (2009) Talanta 79:1031–1035

    CAS  PubMed  Google Scholar 

  15. Schmeide K, Pompe S, Bubner M, Heise KH, Bernhard G, Nitsche H (2000) Radiochim Acta 88:723–728

    CAS  Google Scholar 

  16. Son EB, Poo KM, Chang JS, Chae KJ (2018) Sci Total Environ 615:161–168

    CAS  PubMed  Google Scholar 

  17. Alemtsehay TR, Zhang D, Xin L (2018) Colloid Surf A 556:299–308

    Google Scholar 

  18. Zareh MM, Aldaher A, Hussein AEM, Mahfouz MG, Soliman M (2013) J Radioanal Nucl Chem 295:1153–1159

    CAS  Google Scholar 

  19. Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H (2007) J Colloid Interface Sci 310:57–73

    CAS  PubMed  Google Scholar 

  20. Lehmann J, Gaunt J, Rondon M (2006) Mitig Adapt Strat Glob 11:403–427

    Google Scholar 

  21. Chu JJ, Ding Y, Zhuang QJ (2006) J Zhejiang Univ Sci B 7:623–626

    PubMed  PubMed Central  Google Scholar 

  22. Patel S (2012) Rev Environ Sci Bio 11:249–259

    Google Scholar 

  23. Groote HD, Ajuonu O, Attignon S, Djessou R, Neuenschwander P (2003) Ecol Econ 45:105–117

    Google Scholar 

  24. Saha S, Ray AK (2011) Turk J Fish Aquat Sci 11:199–207

    Google Scholar 

  25. Yin D, Wang X, Chen C, Peng B, Tan C, Li H (2016) Chemosphere 152:196–206

    CAS  PubMed  Google Scholar 

  26. Zhang A, Liu Y, Pan GX, Hussain Q, Li LQ, Zheng J, Zhang X (2012) Plant Soil 351:263–275

    CAS  Google Scholar 

  27. Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace MN, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Gu B, Watson D, Cirpka OA, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2006) Environ Sci Technol 40:3986–3995

    CAS  PubMed  Google Scholar 

  28. Dang VM, Joseph S, Van HT, Mai TLA, Duong TMH, Simon W, Munroe P, Mitchell D, Tahermoosavi S (2019) Environ Technol 40:3200–3215

    CAS  PubMed  Google Scholar 

  29. Low KS, Lee CK, Tan KK (1995) Bioresour Technol 52:79–83

    CAS  Google Scholar 

  30. Yin P, Yu Q, Jin B, Ling Z (1999) Water Res 33:1960–1963

    CAS  Google Scholar 

  31. Hao Y, Roach AL, Ramelow GJ (1993) J Environ Sci Health A 10:2333–2343

    Google Scholar 

  32. Zhang F, Wang X, Yin DX, Peng B, Tan CY, Liu YG, Tan XF, Wu SX (2015) J Environ Manag 153:68–73

    CAS  Google Scholar 

  33. Hadjittofi L, Pashalidis I (2015) J Radioanal Nucl Chem 304:897–904

    CAS  Google Scholar 

  34. Mahramanlioglu M (2003) J Radioanal Nucl Chem 256:99–105

    CAS  Google Scholar 

  35. Caccin M, Giacobbo F, Ros DF, Besozzi L, Mariani M (2013) J Radioanal Nucl Chem 297:9–18

    CAS  Google Scholar 

  36. Hu H, Zhang X, Wang T, Sun L, Wu H, Chen X (2018) J Radioanal Nucl Chem 316:349–362

    CAS  Google Scholar 

  37. Wang X, Shi Z, Kinniburgh DG, Zhao L, Ni S, Wang R, Hou Y, Cheng K, Zhu B (2019) J Geochem Explor 204:33–42

    CAS  Google Scholar 

  38. Chen W, Wei R, Ni J, Yang L, Qian W, Yang Y (2018) Chemosphere 210:753–761

    CAS  PubMed  Google Scholar 

  39. Zheng Q, Wang Z, Chen B, Liu G, Zhao J (2016) Spectrosc Spect Anal 36:3355–3359

    CAS  Google Scholar 

  40. Blanco-Canqui H (2017) Soil Sci Soc Am J 81:687

    CAS  Google Scholar 

  41. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Bioresource Technol 107:419–428

    CAS  Google Scholar 

  42. Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Bioresour Technol 101:8868–8872

    CAS  PubMed  Google Scholar 

  43. Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011) Bioresour Technol 102:6273–6278

    CAS  PubMed  Google Scholar 

  44. Yuan JH, Xu RK, Zhang H (2011) Bioresour Technol 102:3488–3497

    CAS  PubMed  Google Scholar 

  45. Chun Y, Sheng G, Chiou CT, Xing BS (2004) Environ Sci Technol 38:4649–4655

    CAS  PubMed  Google Scholar 

  46. Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Biomass Bioenergy 47:268–276

    CAS  Google Scholar 

  47. Lara-Serrano JS, Miriam RQO, López-Miranda J, Fileto-Pérez HA, Pedraza-Bucio FE, Rico-Cerda JL, Rutiaga-Quiñones JG (2016) BioResources 11:7214–7223

    CAS  Google Scholar 

  48. Wang Z, Guo H, Shen F, Yang G, Zhang Y, Zeng Y, Wang L, Xiao H, Deng S (2015) Chemosphere 119:646–653

    CAS  PubMed  Google Scholar 

  49. Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Environ Sci Technol 44:1247–1253

    CAS  PubMed  Google Scholar 

  50. Chen B, Chen Z (2009) Chemosphere 76:127–133

    CAS  PubMed  Google Scholar 

  51. Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H (2011) Small 7:1876–1902

    CAS  PubMed  Google Scholar 

  52. Fan Q, Shao D, Lu Y, Wu W, Wang X (2009) Chem Eng J 150:188–195

    CAS  Google Scholar 

  53. Shao D, Wang X, Li JX, Huang YS, Ren XM, Hou GS, Wang XK (2015) Environ Sci Water Res 1:169–176

    CAS  Google Scholar 

  54. Wazne M, Korfiatis GP, Meng X (2003) Environ Sci Technol 37:3619–3624

    CAS  PubMed  Google Scholar 

  55. Han R, Zou W, Wang Y, Zhu L (2007) J Environ Radioact 93:127–143

    CAS  PubMed  Google Scholar 

  56. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) J Hazard Mater 184:65–72

    CAS  PubMed  Google Scholar 

  57. Chen L, Feng S, Zhao D, Chen F, Li F, Chen C (2017) J Colloid Interface Sci 490:197–206

    CAS  PubMed  Google Scholar 

  58. Jung KW, Lee SY, Choi JW, Lee YJ (2019) Chem Eng J 369:529–541

    CAS  Google Scholar 

  59. Shao D, Hou G, Li JX, Wen T, Ren XM, Wang XK (2014) Chem Eng J 255:604–612

    CAS  Google Scholar 

  60. Febrianto J, Kosasih AN, Sunarso J, Ju YS, Indraswati N, Ismadji S (2009) J Hazard Mater 162:616–645

    CAS  PubMed  Google Scholar 

  61. Ho YS, Porter JF, McKay G (2002) Water Air Soil Pollut 141:1–33

    CAS  Google Scholar 

  62. Wang Y, Tang XW, Chen YM, Zhan LT, Li Z, Tang Q (2009) J Hazard Mater 172:30–37

    CAS  PubMed  Google Scholar 

  63. Gao Y, Chen K, Tan XL, Wang XL, Alsaedi A, Hayat T, Chen CL (2017) ACS Sustain Chem Eng 5:2163–2171

    CAS  Google Scholar 

  64. Tan IA, Hameed BH, Ahmad AL (2007) Chem Eng J 127:111–119

    CAS  Google Scholar 

  65. Bhaumik M, Setshedi K, Maity A, Onyango MS (2013) Sep Purif Technol 110:11–19

    CAS  Google Scholar 

  66. Ho YS, McKay G (1999) Process Biochem 34:451–465

    CAS  Google Scholar 

  67. Plazinski W, Rudzinski W, Plazinska A (2009) Adv Colloid Interface 152:2–13

    CAS  Google Scholar 

  68. Gulnaz O, Saygideger S, Kusvuran E (2005) J Hazard Mater 120:193–200

    CAS  PubMed  Google Scholar 

  69. Sadeek SA, Farag NM, Kouraim MN, Gado MA (2014) J Gen Virol 2:409–427

    Google Scholar 

  70. Shawky S, Geleel MA, Aly A (2005) J Radioanal Nucl Chem 265:81–84

    CAS  Google Scholar 

  71. Mohanty K, Jha M, Meikap BC, Biswas MN (2006) Chem Eng J 117:71–77

    CAS  Google Scholar 

  72. Sarkar D, Das SK, Mukherjee P, Bandyopadhyay A (2010) Clean Soil Air Water 38:764–770

    CAS  Google Scholar 

  73. Mahamadi C, Nharingo T (2007) Toxicol Environ Chem 89:297–305

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant No. 51807046; Foundation of Anhui Province Key Laboratory of Medical Physics and Technology under Grant No. LMPT2017Y7BP0U1581; Specialized Research Fund for the Doctoral Program of Hefei University of Technology under Grant No. JZ2017HGBZ0944.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuheng Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Xing, Y., Ren, A. et al. Study on adsorption properties of water hyacinth-derived biochar for uranium (VI). J Radioanal Nucl Chem 324, 1317–1327 (2020). https://doi.org/10.1007/s10967-020-07160-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07160-2

Keywords

Navigation