Skip to main content
Log in

Remediation of Cs-134 from liquid solution by synthesized poly(vinyl alcohol-acrylamide) blended with CuO nanoparticles

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Treatment of liquid waste solution containing long-lived isotopes like Cs-134 isotopes is very important environmentally. In this investigation, CuO nanoparticles were made using Cu(NO3)2 as a precursor. The produced CuO nanoparticles were added to poly (vinyl alcohol-t- acrylamide) during the preparation process. The obtained blended polymer was characterized by different analytical tools. The blended polymer was applied to remediate the Cs-134 from a liquid solution. Moreover, the theoretical models were applied to describe the nature of the elimination of Cs-134 from its solution. The results exhibited that the blended polymer has a high capacity and fast removal performance toward Cs-134.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ali I, Tan X, Li J, Peng C, Wan P, Naz I, Duan Z, Ruan Y (2023) Innovations in the development of promising adsorbents for the remediation of microplastics and nanoplastics–A critical review. Water Res 230:119526. https://doi.org/10.1016/j.watres.2022.119526

    Article  CAS  PubMed  Google Scholar 

  2. Massoud A, Mahmoud HH (2023) Performance appraisal of a cross-linked polymer prepared by gamma radiation for the removal of copper and its binding mechanism. Int J Polym Anal Character 28:12–31. https://doi.org/10.1080/1023666X.2022.2138136

    Article  CAS  Google Scholar 

  3. M Wang, G Li, C Xia, X Jing, R Wang, Q Liu, X Cai, (2021) Chem Eng J 411:128489, https://doi.org/10.1016/j.cej.2021.128489

  4. Cucu E, Dalkılıç E, Altundas R, Sadak AE (2022) Gas sorption and selectivity study of N, N, N′, N′-tetraphenyl-1,4-phenylenediamine based microporous hyper-crosslinked polymers. Microporous Mesoporous Mater 330:111567. https://doi.org/10.1016/j.micromeso.2021.111567

    Article  CAS  Google Scholar 

  5. Uzunok S, Sonmez HB (2023) Reusable polycaprolactone based sorbents with different cross-linking densities for the removal of organic pollutants. J Environ Chem Eng 11(2):109287. https://doi.org/10.1016/j.jece.2023.109287

    Article  CAS  Google Scholar 

  6. Hassan CM, Trakampan P, Peppas NA (2002) Water solubility characteristics of Poly(vinyl alcohol) and gels prepared by freezing/thawing processes. In: Amjad Z (ed) Water soluble polymers. Springer, Boston. https://doi.org/10.1007/0-306-46915-4_3

    Chapter  Google Scholar 

  7. Q Yang, J Guo, S Zhang, F Guan, Y Yu, Q Yao, X Zhang, Y Xu, (2023) Colloids and Surfaces A: Physicochemical and Engineering Aspects, Part B 657:130638. https://doi.org/10.1016/j.colsurfa.2022.130638.

  8. El-Mahalawy AM, Abdrabou MM, Mansour SA, Ali FM (2023) Appreciably optimization of PVA/PVP nanocomposite blend for enhanced optoelectronics properties and multifunctional applications. Phys B: Condensed Matter 650:414586. https://doi.org/10.1016/j.physb.2022.414586

    Article  CAS  Google Scholar 

  9. Qana A, Alsulami A, Rajeh, (2023) Modification and development in the microstructure of PVA/CMC-GO/Fe3O4 nanocomposites films as an application in energy storage devices and magnetic electronics industry. Ceram Int. https://doi.org/10.1016/j.ceramint.2023.01.029

    Article  Google Scholar 

  10. Maengkyo O, Jeon MK, Lee K, Foster RI, Lee C-H (2022) Assessment of chlorination technique for decontamination of radioactive concrete waste using simulated concrete waste. Progress Nuclear Energy 154:104458. https://doi.org/10.1016/j.pnucene.2022.104458

    Article  CAS  Google Scholar 

  11. Taisir K, Abbas, Khalid T, Rashid, Qusay F, Alsalhy, NaY (2022) Chem Eng Res Design 179:535-548, ISSN 0263-8762, https://doi.org/10.1016/j.cherd.2022.02.001.

  12. Mishra SP, Prasad SK, Dubey RS, Mishra M, Tiwari D, Lee S-M (2007) Biosorptive behaviour of rice hulls for Cs-134 from aqueous solutions: a radiotracer study. Appl Radiat Isotopes 65(3):280–286. https://doi.org/10.1016/j.apradiso.2006.09.007

    Article  CAS  Google Scholar 

  13. Saenko V, Ivanov V, Tsyb A, Bogdanova T, Tronko M, Demidchik Yu, Yamashita S (2011) The chernobyl accident and its consequences. Clin Oncol 23(4):234–243. https://doi.org/10.1016/j.clon.2011.01.502

    Article  CAS  Google Scholar 

  14. Khan WS, Asmatulu E, Uddin MN, Asmatulu R (2022) Recycling and reusing of engineering materials. Elsevier, Amsterdam, pp 275–294. https://doi.org/10.1016/B978-0-12-822461-8.00009-7

    Book  Google Scholar 

  15. Lee WE, Ojovan MI (2013) Radioactive waste management and contaminated site clean-up. Woodhead Publishing, Sawston, pp 3–50e

    Book  Google Scholar 

  16. Massoud A, Farid OM, Maree RM, Allan KF, Ryan Tian Z (2020) An improved metal cation capture on polymer with graphene oxide synthesized by gamma radiation. React Funct Polym 151:104564. https://doi.org/10.1016/j.reactfunctpolym.2020.104564

    Article  CAS  Google Scholar 

  17. Raut DR, Mohapatra PK, Manchanda VK (2012) An assessment of initial leaching characteristics of alkali-borosilicate glasses for nuclear waste immobilization. J Membr Sci 390–391:76–83. https://doi.org/10.1016/j.memsci.2011.11.015

    Article  CAS  Google Scholar 

  18. Farid OM, Ojovan MI, Massoud A, Abdel Rahman RO (2019) An assessment of initial leaching characteristics of alkali-borosilicate glasses for nuclear waste immobilization. Materials 12(9):1462. https://doi.org/10.3390/ma12091462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wenming D, Xiangke W, Jinzhou D et al (1999) Sorption and desorption of radioselenium on red earth and its solid components. J Radioanal Nucl Chem 240:715. https://doi.org/10.1007/BF02349842

    Article  Google Scholar 

  20. Chitnis RR, Wattal PK, Ramanujam A et al (1999) Recovery of actinides extracted by Truex solvent from high level waste using complexing agents: I. batch studies. J Radioanal Nucl Chem 240:721. https://doi.org/10.1007/BF02349843

    Article  CAS  Google Scholar 

  21. Mondino AV, Cols HJ, Cristini PR et al (1999) Separation of iodine produced from fission with a porous metal silver column in99Mo production. J Radioanal Nucl Chem 240:731–734. https://doi.org/10.1007/BF02349845

    Article  CAS  Google Scholar 

  22. Massoud A, Mahmoud HH (2023) Recovery of Zn(II) from simulated liquid waste using poly(Vinyl Alcohol-Acrylamide) synthesized by gamma radiolysis method. J Polym Environ, in press. https://doi.org/10.1007/s10924-023-02910-1

    Article  Google Scholar 

  23. Massoud & S. A. Waly, (2014) Preparation and characterization of poly (acrylic acid-dimethylaminoethylmethacrylate) as amphoteric exchange resin and its adsorption properties. Colloid Polym Sci 292(12):3077. https://doi.org/10.1007/s00396-014-3335-4

    Article  CAS  Google Scholar 

  24. Massoud A, Mansor HH (2017) Evaluation of hybrid polymeric resin containing nanoparticles of iron oxide for selective separation of In(III) from Ga(III). J Inorg Organomet Polym 27:1806. https://doi.org/10.1007/s10904-017-0645-2

    Article  CAS  Google Scholar 

  25. Massoud A, Waly SA, Abou E-N (2017) Removal of U(VI) from simulated liquid waste using synthetic organic resin. Radiochemistry 59(3):272. https://doi.org/10.1134/S1066362217030092

    Article  CAS  Google Scholar 

  26. Parekh ZR, Chaki SH, Hirpara AB, Patel GH, Kannaujiya RM, Khimani AJ, Deshpande MP (2021) CuO nanoparticles–synthesis by wet precipitation technique and its characterization. Physica B: Condensed Matter 610:412950. https://doi.org/10.1016/j.physb.2021.412950

    Article  CAS  Google Scholar 

  27. Rujun Wu, Ma Z, Zhenggui Gu, Yang Y (2010) Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC–water mixed solvent. J Alloys Compd 504(1):45–49. https://doi.org/10.1016/j.jallcom.2010.05.062

    Article  CAS  Google Scholar 

  28. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch. Springer 1912:387–409

    Article  Google Scholar 

  29. Mobarak MB, Sahadat Hossain Md, Chowdhury F, Ahmed S (2022) Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arab J Chem 15(10):104117. https://doi.org/10.1016/j.arabjc.2022.104117

    Article  CAS  Google Scholar 

  30. Massoud A, Masoud AM, Youssef WM (2019) Sorption characteristics of uranium from sulfate leach liquor by commercial strong base anion exchange resins. J Radioanal Nucl Chem 322:1065. https://doi.org/10.1007/s10967-019-06770-9

    Article  CAS  Google Scholar 

  31. Sukhikh S, Prosekov A, Ivanova S, Maslennikov P, Andreeva A, Budenkova E, Kashirskikh E, Tcibulnikova A, Zemliakova E, Samusev I, Babich O (2022) Identification of metabolites with antibacterial activities by analyzing the FTIR spectra of microalgae. Life (Basel) 12(9):1395. https://doi.org/10.3390/life12091395.PMID:36143431;PMCID:PMC9506262

    Article  CAS  PubMed  Google Scholar 

  32. Massoud A, Fatma S, Abdou & Mohamed Yousif, (2023) Evaluation of mineral compositions of surface and subsurface rock samples by neutron activation analysis. Int J Environ Anal Chem 103:528. https://doi.org/10.1080/03067319.2020.1862095

    Article  CAS  Google Scholar 

  33. Lee XJ, Hiew BYZ, Lai KC, Tee WT, Thangalazhy-Gopakumar S, Gan S, Lee LY (2021) Applicability of a novel and highly effective adsorbent derived from industrial palm oil mill sludge for copper sequestration: central composite design optimisation and adsorption performance evaluation. J Environ Chem Eng 9(5):105968. https://doi.org/10.1016/j.jece.2021.105968

    Article  CAS  Google Scholar 

  34. Chandrasekar M, Subash M, Logambal S, Udhayakumar G, Uthrakumar R, Inmozhi C, Wedad A, Al-Onazi AM, Al-Mohaimeed T-WC, Kanimozhi K (2022) Synthesis and characterization studies of pure and Ni doped CuO nanoparticles by hydrothermal method. J King Saud Univ - Sci 34(3):101831. https://doi.org/10.1016/j.jksus.2022.101831

    Article  Google Scholar 

  35. Massoud A, Challan SB, Maziad N (2021) Characterization of polyvinylpyrrolidone (PVP) with technetium-99m and its accumulation in mice. J Macromol Sci Part A 58(6):408–418. https://doi.org/10.1080/10601325.2021.1873070

    Article  CAS  Google Scholar 

  36. Mote VD, Lokhande SD, Kathwate LH, Awale MB, Sudake Y (2023) Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method. Mater Sci Eng: B 289:116254. https://doi.org/10.1016/j.mseb.2022.116254

    Article  CAS  Google Scholar 

  37. White RL, White CM, Hulusi Turgut A, Massoud ZR, Tian (2018) Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. J Taiwan Instit Chem Eng 85:18–28. https://doi.org/10.1016/j.jtice.2018.01.036

    Article  CAS  Google Scholar 

  38. Massaoud A.A., H.A. Hanafi, T. Siyam, Z.A. Saleh, F.A., Ali, (2008) Cent. Eur. J. Chem., 6(1):39-45. https://doi.org/10.2478/s11532-007-0054-4

  39. A Massoud, F Abou El-Nour, H Killa, U Seddik (2010) Cent Eur J Chem 8(3): 696-701. https://doi.org/10.2478/s11532-010-0041-z

  40. Challan SB, Massoud A (2017) Radiolabeling of graphene oxide by Tchnetium-99m for infection imaging in rats. J Radioanal Nucl Chem 314:2189–2199. https://doi.org/10.1007/s10967-017-5561-y

    Article  CAS  Google Scholar 

  41. Massoud A, Rizk HE, Attallah MF (2021) Selective separation of Y(III) from Sr(II) using hybrid polymer: synthesis, characterization, batch and column study. Polym Bull 78:7053–7069. https://doi.org/10.1007/s00289-020-03479-8

    Article  CAS  Google Scholar 

  42. Alyan A, Abdel-Samad S, Massoud A, Waly SA (2019) Characterization and thermal conductivity investigation of Copper-Polyaniline Nano composite synthesized by gamma radiolysis method. Heat Mass Transfer 55:2409–2417. https://doi.org/10.1007/s00231-019-02588-z

    Article  CAS  Google Scholar 

  43. Challan SB, Marzook FA, Massoud A (2020) Synthesis of radioiodinated carnosine for hepatotoxicity imaging induced by carbon tetrachloride and its biological assessment in rats. Radiochim Acta 108(5):397–408. https://doi.org/10.1515/ract-2019-3162

    Article  CAS  Google Scholar 

  44. Motaleb MA, El-Tawoosy M, Mohamed SB, Borei IH, Ghanem HM, Massoud AA (2014) 99 m Tc-labeled teicoplanin and its biological evaluation in experimental animals for detection of bacterial infection. Radiochemistry 56(5):544–549. https://doi.org/10.1134/S1066362214050154

    Article  CAS  Google Scholar 

  45. Challan SB, Massoud AA, El Tawoosy M, Motaleb MA, Borei IH, HMG (2018) 99mTc-labeled erythrocin and biological evaluation in mice for detection of bacterial infection. Asian J Phys Chem Sci. 5(2):2456–7779. https://doi.org/10.9734/AJOPACS/2018/40170

    Article  Google Scholar 

  46. Abdel-Samad SM, Fahmy AA, Massoud AA, Elbedwehy AM (2017) Experimental investigation of TiO2-water nanofluids thermal conductivity synthesized by sol-gel technique. Curr Nanosci 13(6):586–594. https://doi.org/10.2174/1573413713666170619124221

    Article  CAS  Google Scholar 

  47. Twfiq MZ, Zarif FM, Massoud A, Al-Temamy AM (2021) Determination of the petro-physical and natural radioactivity properties of nubian sandstone aquifer at the area of Northwest El Ain Village, Sharq El-Oweinat Area, Southwestern desert Egypt. Asian J Environ Ecol 15(4):37–55. https://doi.org/10.9734/AJEE/2021/v15i430236

    Article  Google Scholar 

  48. Tag AF, El-Din EA, Elshehy MO, El-Magied A, Atia AA, El-Khouly ME (2018) Decontamination of radioactive cesium ions using ordered mesoporous monetite. RSC Adv 8:19041–19050. https://doi.org/10.1039/C8RA02707B

    Article  Google Scholar 

  49. El-Daoushy AF, Aydia MI, Elbayoumy S, Mahmoud WH, Sakr TM, El-Azony KM (2019) Removal of 134Cs(I) and 60Co(II) from radioactive waste using silver nanoparticles. Egyptian J Pure Appl Sci 57(2):61–71

    Article  Google Scholar 

  50. Hamed MM, Holiel M, Ismail ZH (2016) Removal of 134Cs and 152+ 154Eu from liquid radioactive waste using Dowex HCR-S/S. Radiochimica Acta 104(6):399–413. https://doi.org/10.1515/ract-2015-2514

    Article  CAS  Google Scholar 

  51. Khandaker S, Toyohara Y, Kamida S, Kuba T (2018) Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Res Ind 19:35–46

    Article  Google Scholar 

  52. Attia LA, Youssef MA, Abdel Moamen OA (2019) Feasibility of radioactive cesium and europium sorption using valorized punica granatum peel: kinetic and equilibrium aspects. Sep Sci Technol 56:217–232. https://doi.org/10.1080/01496395.2019.1708111

    Article  CAS  Google Scholar 

  53. Gamal R, Sami NM, Hassan HS (2022) Assessment of modified Salvadora Persica for removal of 134Cs and 152+154Eu radionuclides from aqueous solution. Environ Sci Pollut Res 29:3072–3090. https://doi.org/10.1007/s11356-021-15828-9

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Cyclotron Project, the Nuclear Chemistry Department, Egyptian Atomic Energy Authority (EAEA) for their support of this work. The authors also thank Prof. Dr. Reda Sheha and Prof. Dr. Saber Ibrahim for their help in some analyses of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Massoud.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghamry, M.A., Abido, A.M.N. & Massoud, A. Remediation of Cs-134 from liquid solution by synthesized poly(vinyl alcohol-acrylamide) blended with CuO nanoparticles. J Radioanal Nucl Chem 332, 3635–3649 (2023). https://doi.org/10.1007/s10967-023-09042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09042-9

Keywords

Navigation