Skip to main content
Log in

Radiolabeling of graphene oxide by Tchnetium-99m for infection imaging in rats

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) was synthesized by modified Hummers method and was characterized using HR-TEM, FTIR, XRD and zeta potential. The antibacterial activity of GO towards gram-positive bacteria such as Staphylococcus aureus was investigated in vitro. Different parameters were used to study the GO labeling by 99mTc. Under optimum conditions, the labeling yield of 99mTc-GO complex is 91%. Biodistribution studies in Swiss Albino rats were carried out in experimentally induced infection in the left lateral thigh using Staphylococcus aureus. The biodistribution study revealed that the optimum accumulation of 99mTc-GO at the infection sites is 4.21 ± 0.32 at 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Trends Biotechnol 29(5):205–212

    Article  Google Scholar 

  2. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39(1):228–240

    Article  CAS  Google Scholar 

  3. Jung I, Dikin DA, Piner RD, Ruoff RS (2008) Nano Lett 8:4283–4287

    Article  CAS  Google Scholar 

  4. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Mater Today 14(7–8):316–323

    Article  CAS  Google Scholar 

  5. Wu S-Y, An SSA, Hulme J (2015) Int J Nanomed 10(Spec Iss):9–24

    CAS  Google Scholar 

  6. Liu JQ, Cui L, Dusan L (2013) Acta Biomater 9(12):9243–9257

    Article  CAS  Google Scholar 

  7. Feng L, Wu L, Qu X (2013) Adv Mater 25(2):168–186

    Article  CAS  Google Scholar 

  8. Pan Y, Sahoo NG, Li L (2012) Expert Opin Drug Deliv 12(9):1365–1376

    Article  Google Scholar 

  9. Shen H, Zhang L, Liu M, Zhang Z (2012) Theranostics 2(3):283–294

    Article  CAS  Google Scholar 

  10. Chen Y, Tan C, Zhang H, Wang L (2015) Chem Soc Rev 44(9):2681–2701

    Article  CAS  Google Scholar 

  11. Kakran NGSM, Bao H, Pan Y, Li L (2011) Curr Med Chem 18(19):4503–4512

    Article  CAS  Google Scholar 

  12. Kim MG, Park JY, Miao W, Lee J, Oh YK (2015) Biomaterials 48:129–136

    Article  Google Scholar 

  13. Mudavath SL, Talat M, Rai M, Srivastava ON, Sundar S (2014) Drug Des Dev Ther 8:1235–1247

    CAS  Google Scholar 

  14. Wang Y, Wang H, Liu D, Song S, Wang X, Zhang H (2013) Biomaterials 34(31):7715–7724

    Article  CAS  Google Scholar 

  15. Prajapati VK, Awasthi K, Yadav TP, Rai M, Srivastava ON, Sundar S (2012) J Infect Dis 205(2):333–336

    Article  CAS  Google Scholar 

  16. Wen H, Dong C, Dong H (2012) Small 8(5):760–769

    Article  CAS  Google Scholar 

  17. Chaudhuri B, Bhadra D, Moroni L, Pramanik K (2015) Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide–polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication 7(1):015009. doi:10.1088/1758-5090/7/1/015009

    Article  Google Scholar 

  18. Shin SR, Aghaei-Ghareh-Bolagh B, Gao X, Nikkhah M, Jung SM et al (2014) Adv Funct Mater 24(39):6136–6144

    Article  CAS  Google Scholar 

  19. Nanda SS, An SSA, Yi DK (2015) Int J Nanomed 10:549–556

    Google Scholar 

  20. Angadlao JD, Santos CM, Felipe MJL, Leon ACC, Rodrigues DF, Advincula RC (2015) Chem Commun 51(14):2886–2889

    Article  Google Scholar 

  21. Zhan S, Zhu D, Ma S et al (2015) ACS Appl Mater Interfaces 7(7):4290–4298

    Article  CAS  Google Scholar 

  22. Kurantowicz N, Sawosz E, Jaworsk S (2015) Nanoscale Res Lett 10:23. doi:10.1186/s11671-015-0749-y

    Article  Google Scholar 

  23. Chen H, Gao D, Wang B et al (2014) Nanotechnology 25(16):165101

    Article  Google Scholar 

  24. Shi S, Yang K, Hong H et al (2013) Biomaterials 34(12):3002–3009

    Article  CAS  Google Scholar 

  25. Qin XC, Guo ZY, Liu ZM et al (2013) J Photochem Photobiol, B 120:156–162

    Article  CAS  Google Scholar 

  26. Wang H, Gu W, Xiao N, Ye L, Xu Q (2014) Int J Nanomed 9:1433–1442

    Google Scholar 

  27. Gurunathan S, Han JW, Eppakayla V, Kim JH (2013) Int J Nanomed 8:1015–1027

    Article  Google Scholar 

  28. Hinzmann M, Jaworski S, Kutwin M et al (2013) Int J Nanomed 9:2409–2417

    Google Scholar 

  29. Liu ZM, Guo ZY, Zhong HQ, Qin XC, Wan MM, Yang BW (2013) Phys Chem Chem Phys 15(8):2961–2966

    Article  CAS  Google Scholar 

  30. Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323

    Article  CAS  Google Scholar 

  31. Nguyen P, Berry V (2012) J Phys Chem Lett 3(8):1024–1029

    Article  CAS  Google Scholar 

  32. Mogharabi M, Abdollahi M, Faramarzi MA (2014) J Pharm Sci 22:23. doi:10.1186/2008-2231-22-23

    Google Scholar 

  33. Gurunathan S, Han JW, Dayem AA et al (2013) J Ind Eng Chem 19(4):1280–1288

    Article  CAS  Google Scholar 

  34. Smolkova B, Yamani NE, Collins AR, Gutleb AC, Dusinska M (2015) Food Chem Toxicol 77:64–73

    Article  CAS  Google Scholar 

  35. Dallavelle M, Calvaresi M, Bottoni A, Franco MM, Zerbetto F (2015) ACS Appl Mater Interfaces 7(7):4406–4414

    Article  Google Scholar 

  36. Changyuan Hu, Tiewen Lu, Chen Fei, Zhang Rongbin (2013) J Chin Adv Mater Soc 1(1):21–39

    Article  Google Scholar 

  37. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Parl YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

  38. Rien HS, Huub JR, Otto CB, Rudid D, Guido S (2004) J Nucl Med 45:2088

    Google Scholar 

  39. Sarda L, Creminex AC, Lebellec Y, Meulemans A, Lebtahi R (2003) J Nucl Med 44:920

    Google Scholar 

  40. Eaton P, Fernandes JC, Pereira E, Pintado ME, Malcata FX (2008) Ultramicroscopy 108:1128

    Article  CAS  Google Scholar 

  41. Rattana T, Chaiyakun S, Witit-anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P (2012) Procedia Eng 32:759–764

    Article  CAS  Google Scholar 

  42. Wua Y, Luo H, Wang H, Wang C, Zhang J, Zhang Z (2013) J Colloid Interface Sci 394:183–191

    Article  Google Scholar 

  43. Hwang JJ, Ma TW (2012) Mater Chem Phys 136:613–623

    Article  CAS  Google Scholar 

  44. Ghaffari-Moghaddam M, Eslahi H (2014) Arab J Chem 7:846–855

    Article  CAS  Google Scholar 

  45. Johnson LL, Schofield L, Donahay T, Mastrofranceso P (2000) J Nucl Med 41(7):1237–1243

    CAS  Google Scholar 

  46. El-Tawoosy M (2013) J Radioanal Nucl Chem 298:1215–1220

    Article  CAS  Google Scholar 

  47. Moustapha ME, Motaleb MA, Shweeta H, Farouk M (2016) J Radioanal Nucl Chem 307:699–705

    Article  CAS  Google Scholar 

  48. Farouk N, El-Tawoosy M, Ayoub S, El Bayoumy AS (2011) J Radioanal Nucl Chem 290:685–690

    Article  CAS  Google Scholar 

  49. Moustapha ME, Motaleb MA, Shweeta H, Farouk M (2015) J Radioanal Nucl Chem 307:699–705

    Article  Google Scholar 

  50. Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W (2010) Toxicol Lett 198(2):237–243

    Article  CAS  Google Scholar 

  51. El-Kawy OA, Talaat HM (2015) J Label Comp Radiopharm 59:72–77

    Article  Google Scholar 

  52. Ibrahim IT, Waly MA, El-Tawoosy M (2012) Radiochemistry 54(4):395–400

    Article  CAS  Google Scholar 

  53. Sanad MH, El-Tawoosy M (2013) J Radioanal Nucl Chem 298:1105–1109

    Article  CAS  Google Scholar 

  54. Chakraborty S, Vimalnath K, Rajeswari A, Shinto A, Sarma HD, Kamaleshwaran K, Thirumaalaisamy P, Dash A (2014) J Label Compd Radiopharm 57:453–462

    Article  CAS  Google Scholar 

  55. Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, Fan C, Huang Q (2011) Carbon 49:986–995

    Article  CAS  Google Scholar 

  56. Motaleb MA (2009) J Label Compd Radiopharm 52:415–418

    Article  CAS  Google Scholar 

  57. Al-wabli RI, Motaleb MA, Kadi AA, Al-rashood KA, Zaghary WA (2011) J Radioanal Nucl Chem 290(2):507–513

    Article  CAS  Google Scholar 

  58. Zhang X, Yin J, P C, Hu W, Zhu Z, Li W, Fan C, Huang Q (2011) Carbon 49:986–995

    Article  CAS  Google Scholar 

  59. Li YH, Liu TH, Du QJ, Sun JK, Xia YZ, Wang Z, Zhang W, Wang K, Zhu H, Wu D (2011) Chem Biochem Eng Q 25:483–491

    CAS  Google Scholar 

  60. Song J, Wang X, Chang C-T (2014) Article ID 276143. doi:10.1155/2014/276143

  61. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu W-W, Voon CH (2017) Procedia Eng 184:469–477

    Article  CAS  Google Scholar 

  62. Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y (2013) Appl Surf Sci 279(15):432–440

    Article  CAS  Google Scholar 

  63. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) Carbon 53:38–49

    Article  CAS  Google Scholar 

  64. Valko M, Morris H, Cronin MTD (2005) Curr Med Chem 12(10):1161–1208

    Article  CAS  Google Scholar 

  65. Bykkam S, Rao KV, Chakra CHS, Thunugunta T (2013) Int J Adv Biotechnol Res 4(1):142–146

    Google Scholar 

  66. Sanad MH, Saad MM, Fouzy ASM, Marzook F, Ibrahim IT (2016) J Mol Imag Dyn 6:1. doi:10.4172/2155-9937.1000126

    Google Scholar 

  67. Sanad MH, Sakr TM, Abdel-Hamid WHA, Marzook EA (2016) J Radioanal Nucl Chem. doi:10.1007/s10967-016-5120-y

    Google Scholar 

  68. Geskovski N, Kuzmanovska S, Crcarevska MS, Calis S, Dimchevska S, Petrusevska M, Zdravkovski P, Goracinova K (2013) J Label Compd Radiopharm 56(14):689–695

    Article  CAS  Google Scholar 

  69. Rashed HM, Marzook FA, Farag H (2016) Radiolmed 121(12):935–943

    CAS  Google Scholar 

  70. Sanad MH, Sallam KM, Marzook FA, Abd-Elhaliem SM (2016) J Label Compd Radiopharm 59:484–491

    Article  CAS  Google Scholar 

  71. You S, Luzan SM, Szabó TS, Talyzin AV (2013) Carbon 52:171–180. doi:10.1016/j.carbon.2012.09.018

    Article  CAS  Google Scholar 

  72. Talyzin AV, Solozhenko VL, Kurakevych OO, Szabó TS, Dékány I, Kurnosov A, Dmitriev V (2008) Angew Chem Int Ed 47(43):8268–8271. doi:10.1002/anie.200802860

    Article  CAS  Google Scholar 

  73. Essa BM, Sakr TM, Khedr MA, El-Essawy FA, El-Mohty AA (2015) Eur J Pharm Sci 76:102–109. doi:10.1007/s11547-016-0677-7

    Article  CAS  Google Scholar 

  74. Rien HS, Huub JR, Otto CB, Rudi D, Guido S (2004) J Nucl Med 42:2088–2090

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to staff members of Cyclotron, Nuclear Research Center, Egyptian Atomic Energy Authority, for providing necessary facilities and necessary help in carrying out the experiments work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Massoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors state that all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Challan, S.B., Massoud, A. Radiolabeling of graphene oxide by Tchnetium-99m for infection imaging in rats. J Radioanal Nucl Chem 314, 2189–2199 (2017). https://doi.org/10.1007/s10967-017-5561-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5561-y

Keywords

Navigation