Skip to main content
Log in

The preparation of amino-reinforced phosphorylated biochar for efficient uranium adsorption

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Biomass transformation is considered as a green, economical and sustainable strategy in the field of wastewater treatment. Herein, we demonstrate a novel amino-reinforced phosphorylated biochar by the modified phosphoric acid (H3PO4)/urea/N,N-dimethylformamide method for highly effective U(VI) capture. The introduction of urea provides new amino sites on the surface of carbon and plays a decisive role in the phosphorylation modification of biochar. The adsorption process of the amino-reinforced phosphorylated biochar presents pseudo-second-order kinetics, and the maximum adsorption capacity calculated by Langmuir isotherm model can reach 150.38 mg g−1. Moreover, the adsorbent still maintains an excellent removal efficiency after four adsorption–desorption recycles and shows superior selectivity. Structural analysis results after adsorption demonstrate that the adsorption performance of phosphorylated carbon is predominantly attributed to the chelating and electrostatic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang C, Cui W, Niu C, Yi S, Liang R, Qi J, Chen X, Jiang W, Zhang L, Qiu J (2021) RGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination. Chem Eng J 428:131178. https://doi.org/10.1016/j.cej.2021.131178

    Article  CAS  Google Scholar 

  2. Zhao S, Feng T, Feng L, Yan B, Sun W, Luo G, Wang M, Jian Y, Liu T, Yuan Y, Wang N (2022) Rapid recovery of uranium with magnetic-single-molecular amidoxime adsorbent. Sep Purif Technol 287:120524. https://doi.org/10.1016/j.seppur.2022.120524

    Article  CAS  Google Scholar 

  3. Xu M, Zhou L, Zhang L, Zhang S, Chen F, Zhou R, Hua D (2022) Two-dimensional imprinting strategy to create specific nanotrap for selective uranium adsorption with ultrahigh capacity. ACS Appl Mater Interfaces 14(7):9408–9417. https://doi.org/10.1021/acsami.1c20543

    Article  CAS  PubMed  Google Scholar 

  4. Xiong T, Li Q, Liao J, Zhang Y, Zhu W (2022) Highly enhanced adsorption performance to uranium (VI) by facile synthesized hydroxyapatite aerogel. J Hazard Mater 423:127184. https://doi.org/10.1016/j.jhazmat.2021.127184

    Article  CAS  PubMed  Google Scholar 

  5. Ji Y, Xu F, Wei W, Gao H, Zhang K, Zhang G, Xu Y, Zhang P (2021) Efficient and fast adsorption of methylene blue dye onto a nanosheet MFI zeolite. J Solid State Chem 295:121917. https://doi.org/10.1016/j.jssc.2020.121917

    Article  CAS  Google Scholar 

  6. Liu T, Zhang X, Gu A, Liu Y, Chen M, Wang H, Zhang R, Tang S, Xie Z, Wang N (2022) In-situ grown bilayer MOF from robust wood aerogel with aligned microchannel arrays toward selective extraction of uranium from seawater. Chem Eng J 433:134346. https://doi.org/10.1016/j.cej.2021.134346

    Article  CAS  Google Scholar 

  7. Wang Y, Lin K, Liu Y, Deng X (2022) Nanocomposites of functionalized metal organic frameworks and magnetic graphene oxide for selective adsorption and efficient determination of Lead(II). J Solid State Chem 313:123300. https://doi.org/10.1016/j.jssc.2022.123300

    Article  CAS  Google Scholar 

  8. Zhao W, Lin X, Cai H, Mu T, Luo X (2017) Preparation of mesoporous carbon from sodium lignosulfonate by hydrothermal and template method and its adsorption of uranium (VI). Ind Eng Chem Res 56(44):12745–12754. https://doi.org/10.1021/acs.iecr.7b02854

    Article  CAS  Google Scholar 

  9. Jiang D, Li M, Wang Y (2016) Biochar synthesis and applications in energy storage and conversion. Green Chem 18:4824–4854. https://doi.org/10.1039/c6gc01172a

    Article  Google Scholar 

  10. Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5(6):2411–2428. https://doi.org/10.1039/c6ta08742f

    Article  CAS  Google Scholar 

  11. Guilhen SN, Rovani S, Araujo LG, Tenorio JAS, Masek O (2021) Uranium removal from aqueous solution using macauba endocarp-derived biochar: effect of physical activation. Environ Pollut 272:116022. https://doi.org/10.1016/j.envpol.2020.116022

    Article  CAS  PubMed  Google Scholar 

  12. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product properties, uses, and commercial potential. J Appl Polym Sci 37:815–827

    CAS  Google Scholar 

  13. Li T, Chen C, Brozena A, Zhu J, Xu L, Driemeier C, Dai J, Rojas OJ, Isogai A, Wagberg L, Hu L (2021) Developing fibrillated cellulose as a sustainable technological material. Nature 590(7844):47–56. https://doi.org/10.1038/s41586-020-03167-7

    Article  CAS  PubMed  Google Scholar 

  14. Yuan L, Liu Y, Shi W, Lv Y, Lan J, Zhao Y, Chai Z (2011) High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Trans 40(28):7446–7453. https://doi.org/10.1039/c1dt10085h

    Article  CAS  PubMed  Google Scholar 

  15. Yue Y, Sun X, Mayes R, Kim J, Fulvio PF, Qiao Z, Brown S, Tsouris C, Oyola Y, Dai S (2013) Polymer-coated nanoporous carbons for trace seawater uranium adsorption. Sci China Chem 56(11):1510–1515. https://doi.org/10.1007/s11426-013-4995-5

    Article  CAS  Google Scholar 

  16. Yang P, Liu Q, Liu J, Chen R, Li R, Bai X, Wang J (2019) Highly efficient immobilization of uranium(VI) from aqueous solution by phosphonate-functionalized dendritic fibrous nanosilica (DFNS). J Hazard Mater 363:248–257. https://doi.org/10.1016/j.jhazmat.2018.09.062

    Article  CAS  PubMed  Google Scholar 

  17. Lehtonen J, Hassinen J, Kumar AA, Johansson LS, Mäenpää R, Pahimanolis N, Pradeep T, Ikkala O, Rojas OJ (2020) Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose 27(18):10719–10732. https://doi.org/10.1007/s10570-020-02971-8

    Article  CAS  Google Scholar 

  18. Chen H, Wang Y, Zhao W, Xiong G, Cao X, Dai Y, Le Z, Zhang Z, Liu Y (2017) Phosphorylation of graphehe oxide to improve adsorption of U(VI) from aquaeous solutions. J Radioanal Nucl Chem 313(1):175–189. https://doi.org/10.1007/s10967-017-5274-2

    Article  CAS  Google Scholar 

  19. Zhou L, Huang Z, Luo T, Jia Y, Liu Z, Adesina AA (2014) Biosorption of uranium(VI) from aqueous solution using phosphate-modified pine wood sawdust. J Radioanal Nucl Chem 303:1917–1925. https://doi.org/10.1007/s10967-014-3725-6

    Article  CAS  Google Scholar 

  20. Shukla JP, Misra SK (1991) Carrier-mediated transport of uranyl ions across tributyl phosphate-dodecane liquid membranes. J Membr Sci 64(1):93–102. https://doi.org/10.1016/0376-7388(91)80080-P

    Article  CAS  Google Scholar 

  21. Deng S, Yu C, Niu J, Liao J, Liu X (2020) Microwave assisted synthesis of phosphorylated PAN fiber for highly efficient and enhanced extraction of U(VI) ions from water. Chem Eng J 392:123815. https://doi.org/10.1016/j.cej.2019.123815

    Article  CAS  Google Scholar 

  22. Yu J, Yuan L, Wang S (2019) Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions. CCS Chem 3:286–295. https://doi.org/10.31635/ccschem.019.20190005

    Article  CAS  Google Scholar 

  23. Zhang N, Li J, Tian B (2023) Phosphorylated cellulose carbamate for highly effective capture of U(VI). J Radioanal Nucl Ch 332:173–183. https://doi.org/10.1007/s10967-022-08678-3

    Article  CAS  Google Scholar 

  24. Guilhen SN, Rovani S, Filho LP, Fungaro DA (2018) Kinetic study of uranium removal from aqueous solutions by macaúba biochar. Chem Eng Commun 206(11):1354–1366. https://doi.org/10.1080/00986445.2018.1533467

    Article  CAS  Google Scholar 

  25. Fu F, Xu M, Wang H, Wang Y, Ge H, Zhou J (2015) Improved synthesis of cellulose carbamates with minimum urea based on an easy scale-up method. ACS Sustain Chem Eng 3(7):1510–1517. https://doi.org/10.1021/acssuschemeng.5b00219

    Article  CAS  Google Scholar 

  26. Duan S, Ma W, Pan Y, Meng F, Yu S, Wu L (2017) Synthesis of magnetic biochar from iron sludge for the enhancement of Cr (VI) removal from solution. J Taiwan Inst Chem Eng 80:835–841. https://doi.org/10.1016/j.jtice.2017.07.002

    Article  CAS  Google Scholar 

  27. Shen F, Hu Y, Guan P, Ren X (2012) Ti(4+)-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis. J Chromatogr B 902:108–115. https://doi.org/10.1016/j.jchromb.2012.06.033

    Article  CAS  Google Scholar 

  28. Guilhen SN, Mašek O, Ortiz N, Izidoro JC, Fungaro DA (2019) Pyrolytic temperature evaluation of macauba biochar for uranium adsorption from aqueous solutions. Biomass Bioenergy 122:381–390. https://doi.org/10.1016/j.biombioe.2019.01.008

    Article  CAS  Google Scholar 

  29. Wang L, Dong X, Jiang H, Li ZM (2014) Phosphorylated ordered mesoporous carbon as a novel solid acid catalyst for the esterification of oleic acid. Catal Commun 56:164–167. https://doi.org/10.1016/j.catcom.2014.07.008

    Article  CAS  Google Scholar 

  30. Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y, Hua R, Feng H, Chen J, Liu Y, Hu B, Wang X (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387. https://doi.org/10.1016/j.cej.2019.04.012

    Article  CAS  Google Scholar 

  31. Dai Y, Zhou L, Tang X, Xi J, Ouyang J, Liu Z, Huang G, Adesina A (2020) Macroporous ion-imprinted chitosan foams for the selective biosorption of U(VI) from aqueous solution. Int J Biol Macromol 164:4155–4164. https://doi.org/10.1016/j.ijbiomac.2020.08.238

    Article  CAS  PubMed  Google Scholar 

  32. Zhao H, Qi C, Yan X, Ji J, Chai Z, Wang S, Zheng T (2022) A multifunctional porous uranyl phosphonate framework for cyclic utilization: salvages, uranyl leaking prevention, and fluorescent sensing. Chem Eng J 429:132474. https://doi.org/10.1016/j.cej.2021.132474

    Article  CAS  Google Scholar 

  33. Zhang G, Fang Y, Wang Y, Liu L, Mei D, Ma F, Meng Y, Dong H, Zhang C (2022) Synthesis of amino acid modified MIL-101 and efficient uranium adsorption from water. J Mol Liq 349:118095. https://doi.org/10.1016/j.molliq.2021.118095

    Article  CAS  Google Scholar 

  34. Zhang G, Wang Y, Zhang X, Liu L, Ma F, Zhang C, Dong H (2022) Synthesis of a porous amidoxime modified hypercrosslinked benzil polymer and efficient uranium extraction from water. Colloid Surf A 641:128508. https://doi.org/10.1016/j.colsurfa.2022.128508

    Article  CAS  Google Scholar 

  35. Cai Y, Chen L, Yang S, Xu L, Qin H, Liu Z, Chen L, Wang X, Wang S (2019) Rational synthesis of novel phosphorylated chitosan-carboxymethyl cellulose composite for highly effective decontamination of U(VI). Acs Sustain Chem Eng 7(5):5393–5403. https://doi.org/10.1021/acssuschemeng.8b06416

    Article  CAS  Google Scholar 

  36. Zhang Z, Li Z, Dong Z, Yu F, Wang Y, Wang Y, Cao X, Liu Y, Liu Y (2022) Synergy of photocatalytic reduction and adsorption for boosting uranium removal with PMo12/UiO-66 heterojunction. Chin Chem Lett 33(7):3577–3580. https://doi.org/10.1016/j.cclet.2022.01.062

    Article  CAS  Google Scholar 

  37. Liu Y, Wang Y, Xia H et al (2022) Low-cost reed straw-derived biochar prepared by hydrothermal carbonization for the removal of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 331:3915–3925. https://doi.org/10.1007/s10967-022-08421-y

    Article  CAS  Google Scholar 

  38. Albayari M, Nazal MK, Khalili FI, Nordin N, Adnan R (2021) Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water. J Radioanal Nucl Chem 328:669–678. https://doi.org/10.1007/s10967-018-6358-3

    Article  CAS  Google Scholar 

  39. Xu Z, Xing Y, Ren A, Ma D, Li Y, Hu S (2020) Study on adsorption properties of water hyacinth-derived biochar for uranium (VI). J Radioanal Nucl Chem 324:1317–1327. https://doi.org/10.1007/s10967-020-07160-2

    Article  CAS  Google Scholar 

  40. Li L, Yang M, Lu Q, Zhu W, Ma H, Dai L (2019) Oxygen-rich biochar from torrefaction: a versatile adsorbent for water pollution control. Bioresour Technol 294:122142. https://doi.org/10.1016/j.biortech.2019.122142

    Article  CAS  PubMed  Google Scholar 

  41. Li N, Yin M, Tsang DCW, Yang S, Liu J, Li X, Song G, Wang J (2019) Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: a comparison between raw and modified biochar. Sci Total Environ 697:134115. https://doi.org/10.1016/j.scitotenv.2019.134115

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Y, Xiao J, Hu R, Wang T, Shao X, Chen G, Chen L, Tian X (2020) Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium. J Mol Liq 303:112659. https://doi.org/10.1016/j.molliq.2020.112659

    Article  CAS  Google Scholar 

  43. Ahmed W, Mehmood S, Qaswar M, Ali S, Khan Z, Ying H, Chen D, Núñez-Delgado A (2021) Oxidized biochar obtained from rice straw as adsorbent to remove uranium (VI) from aqueous solutions. J Environ Chem Eng 9(2):105104. https://doi.org/10.1016/j.jece.2021.105104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Research Foundation of Heilongjiang Academy of Sciences [KY2022YZN01], Scientific Research Business Fund Project of Heilongjiang Provincial Research Institutes [CZKYF2022-1-C011], Sciences Talent Team Construction Platform Project of Heilongjiang Academy of Sciences [RC2022YZN01], Special Project of Heilongjiang Academy of Sciences [YZQY2023YZNY01], Provincial-level ecological and environmental protection scientific research project [HST2022H003], Dean Fund of Heilongjiang Provincial Academy of Sciences [YZ2023YZNY02], the Natural Science Foundation of Heilongjiang Province (LH2023A021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Li, J., Tian, B. et al. The preparation of amino-reinforced phosphorylated biochar for efficient uranium adsorption. J Radioanal Nucl Chem 332, 3305–3315 (2023). https://doi.org/10.1007/s10967-023-09025-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09025-w

Keywords

Navigation