Skip to main content
Log in

Porous carboxylated carbon nanotubes hydrogel microspheres for removing U(VI) from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To efficiently remove U(VI) from aqueous solutions, porous polyvinyl alcohol/carboxylated carbon nanotubes/sodium alginate (PPCS) hydrogel microspheres were prepared using the physical cross-linking method. The successful formation of highly porous PPCS hydrogel microspheres was confirmed by SEM and BET. Moreover, PPCS hydrogel microspheres were recovered from aqueous solutions more easily than carbon nanotubes. The main mechanism of PPCS for U(VI) removal may be the chelation of hydroxyl and carboxyl groups. PPCS may be a promising and recyclable adsorbent for uranium extraction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rahman ROA, Ibrahium HA, Hung Y-T (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565. https://doi.org/10.3390/w3020551

    Article  Google Scholar 

  2. Wang Q, Gao Q, Al-Enizi AM, Nafady A, Ma S (2020) Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg Chem Front 7:300–339. https://doi.org/10.1039/c9qi01120j

    Article  CAS  Google Scholar 

  3. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  4. Bagda E, Tuzen M, Sari A (2017) Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae). J Environ Radioact 175:7–14. https://doi.org/10.1016/j.jenvrad.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  5. Saleh TA, Naeemullah TM, Sarı A (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des 117:218–227. https://doi.org/10.1016/j.cherd.2016.10.030

    Article  CAS  Google Scholar 

  6. Deb AKS, Ilaiyaraja P, Ponraju D, Venkatraman B (2011) Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption. J Radioanal Nucl Chem 291:877–883. https://doi.org/10.1007/s10967-011-1366-6

    Article  CAS  Google Scholar 

  7. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462. https://doi.org/10.1021/es203439v

    Article  CAS  PubMed  Google Scholar 

  8. Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896. https://doi.org/10.1039/c5cs00021a

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Wang M, Zhang S, Pan B (2013) Application potential of carbon nanotubes in water treatment: a review. J Environ Sci 25:1263–1280. https://doi.org/10.1016/s1001-0742(12)60161-2

    Article  CAS  Google Scholar 

  10. Tian Y, Gao B, Morales VL, Wu L, Wang Y, Muñoz-Carpena R, Cao C, Huang Q, Yang L (2012) Methods of using carbon nanotubes as filter media to remove aqueous heavy metals. Chem Eng J 210:557–563. https://doi.org/10.1016/j.cej.2012.09.015

    Article  CAS  Google Scholar 

  11. Gupta VK, Moradi O, Tyagi I, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf ASH, Goodarzi M, Garshasbi A (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol 46:93–118. https://doi.org/10.1080/10643389.2015.1061874

    Article  CAS  Google Scholar 

  12. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52

    Article  CAS  Google Scholar 

  13. Zhang S, Han D, Ding Z, Wang X, Zhao D, Hu Y, Xiao X (2019) Fabrication and characterization of one interpenetrating network hydrogel based on sodium alginate and polyvinyl alcohol. J Wuhan Univ Technol-Mater Sci Ed 34:744–751. https://doi.org/10.1007/s11595-019-2112-0

    Article  CAS  Google Scholar 

  14. Guo Y, Liu XY, Xie S, Liu H, Wang C, Wang L (2022) 3D ZnO modified biochar-based hydrogels for removing U(VI) in aqueous solution. Colloids Surf A Physicochem Eng Asp 642:128606. https://doi.org/10.1016/j.colsurfa.2022.128606

    Article  CAS  Google Scholar 

  15. Liu XY, Xie SB, Wang GH, Huang X, Duan Y, Liu HY (2021) Fabrication of environmentally sensitive amidoxime hydrogel for extraction of uranium (VI) from an aqueous solution. Colloids Surf A Physicochem Eng Asp 611:125813. https://doi.org/10.1016/j.colsurfa.2020.125813

    Article  CAS  Google Scholar 

  16. Gao X, Guo C, Hao J, Zhao Z, Long H, Li M (2020) Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int J Biol Macromol 164:4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046

    Article  CAS  PubMed  Google Scholar 

  17. Inal M, Erduran N (2015) Removal of various anionic dyes using sodium alginate/poly(N-vinyl-2-pyrrolidone) blend hydrogel beads. Polym Bull 72:1735–1752. https://doi.org/10.1007/s00289-015-1367-7

    Article  CAS  Google Scholar 

  18. Long J, Wang Y, Xu Y, Li X (2015) An innovative approach for separation and purification of natural products using carbon nanotube-alginate gel beads as a novel stationary phase. RSC Adv 5:10878–10885. https://doi.org/10.1039/c4ra12732c

    Article  CAS  Google Scholar 

  19. Khosroshahi ME, Ghazanfari L (2012) Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid. J Magn Magn Mater 324:4143–4146. https://doi.org/10.1016/j.jmmm.2012.07.025

    Article  CAS  Google Scholar 

  20. Sauerwein M, Steeb H (2020) Modeling of dynamic hydrogel swelling within the pore space of a porous medium. Int J Eng Sci 155:103353. https://doi.org/10.1016/j.ijengsci.2020.103353

    Article  CAS  Google Scholar 

  21. Trikkaliotis DG, Christoforidis AK, Mitropoulos AC, Kyzas GZ (2020) Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol). Carbohydr Polym 234:115890. https://doi.org/10.1016/j.carbpol.2020.115890

    Article  CAS  PubMed  Google Scholar 

  22. Algothmi WM, Bandaru NM, Yu Y, Shapter JG, Ellis AV (2013) Alginate-graphene oxide hybrid gel beads: an efficient copper adsorbent material. J Colloid Interface Sci 397:32–38. https://doi.org/10.1016/j.jcis.2013.01.051

    Article  CAS  PubMed  Google Scholar 

  23. Di Donato P, Taurisano V, Poli A, d’Ayala GG, Nicolaus B, Malinconinco M, Santagata G (2020) Vegetable wastes derived polysaccharides as natural eco-friendly plasticizers of sodium alginate. Carbohydr Polym 229:115427. https://doi.org/10.1016/j.carbpol.2019.115427

    Article  CAS  PubMed  Google Scholar 

  24. Ilkhanizadeh S, Khalafy J, Dekamin MG (2019) Sodium alginate: a biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano 3,2-c chromenes. Int J Biol Macromol 140:605–613. https://doi.org/10.1016/j.ijbiomac.2019.08.154

    Article  CAS  PubMed  Google Scholar 

  25. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A. https://doi.org/10.1039/c3ta10639j

    Article  Google Scholar 

  26. Siddiqui MN, Redhwi HH, Tsagkalias I, Softas C, Ioannidou MD, Achilias DS (2016) Synthesis and characterization of poly(2-hydroxyethyl methacrylate)/silver hydrogel nanocomposites prepared via in situ radical polymerization. Thermochim Acta 643:53–64. https://doi.org/10.1016/j.tca.2016.09.017

    Article  CAS  Google Scholar 

  27. Shehzad H, Zhou L, Wang Y, Ouyang J, Huang G, Liu Z, Li Z (2019) Effective biosorption of U(VI) from aqueous solution using calcium alginate hydrogel beads grafted with amino-carbamate moieties. J Radioanal Nucl Chem 321:605–615. https://doi.org/10.1007/s10967-019-06631-5

    Article  CAS  Google Scholar 

  28. Yi X, Sun F, Han Z, Han F, He J, Ou M, Gu J, Xu X (2018) Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicol Environ Saf 158:309–318. https://doi.org/10.1016/j.ecoenv.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  29. Kong L, Ruan Y, Zheng Q, Su M, Diao Z, Chen D, La H, Chang X, Shih K (2020) Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. J Hazard Mater 382:120784. https://doi.org/10.1016/j.jhazmat.2019.120784

    Article  CAS  PubMed  Google Scholar 

  30. Sun Y, Ding C, Cheng W, Wang X (2014) Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408. https://doi.org/10.1016/j.jhazmat.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  31. Tripathi A, Melo JS (2019) Self-assembled biogenic melanin modulated surface chemistry of biopolymers-colloidal silica composite porous matrix for the recovery of uranium. J Appl Polym Sci 136:46937. https://doi.org/10.1002/app.46937

    Article  CAS  Google Scholar 

  32. Wang X, Yu S, Wu Y, Pang H, Yu S, Chen Z, Hou J, Alsaedi A, Hayat T, Wang S (2018) The synergistic elimination of uranium (VI) species from aqueous solution using bi-functional nanocomposite of carbon sphere and layered double hydroxide. Chem Eng J 342:321–330. https://doi.org/10.1016/j.cej.2018.02.102

    Article  CAS  Google Scholar 

  33. Tang X, Zhou L, Le Z, Wang Y, Liu Z, Huang G, Adesina AA (2020) Preparation of porous chitosan/carboxylated carbon nanotube composite aerogels for the efficient removal of uranium(VI) from aqueous solution. Int J Biol Macromol 160:1000–1008. https://doi.org/10.1016/j.ijbiomac.2020.05.179

    Article  CAS  PubMed  Google Scholar 

  34. Han B, Zhang E, Cheng G, Zhang L, Wang D, Wang X (2018) Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chem Eng J 338:734–744. https://doi.org/10.1016/j.cej.2018.01.089

    Article  CAS  Google Scholar 

  35. Zhao F, Repo E, Song Y, Yin D, Ben Hammouda S, Chen L, Kalliola S, Tang J, Tam KC, Sillanpaa M (2017) Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chem 19:4816–4828. https://doi.org/10.1039/c7gc01770g

    Article  CAS  Google Scholar 

  36. Liao J, Zhang Y (2020) Effective removal of uranium from aqueous solution by using novel sustainable porous Al2O3 materials derived from different precursors of aluminum. Inorg Chem Front 7:765–776. https://doi.org/10.1039/c9qi01426h

    Article  CAS  Google Scholar 

  37. Wei J, Zhang W, Pan W, Li C, Sun W (2018) Experimental and theoretical investigations on Se(iv) and Se(vi) adsorption to UiO-66-based metal-organic frameworks. Environ Sci-Nano 5:1441–1453. https://doi.org/10.1039/c8en00180d

    Article  CAS  Google Scholar 

  38. Liu L, Lin X, Li M, Chu H, Wang H, Xie Y, Du Z, Liu M, Liang L, Gong H, Zhou J, Li Z, Luo X (2021) Microwave-assisted hydrothermal synthesis of carbon doped with phosphorus for uranium(VI) adsorption. J Radioanal Nucl Chem 327:73–89. https://doi.org/10.1007/s10967-020-07453-6

    Article  CAS  Google Scholar 

  39. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution. J Phys Chem B 113:860–864. https://doi.org/10.1021/jp8091094

    Article  CAS  PubMed  Google Scholar 

  40. Allaboun H, Fares M, Abu Al-Rub F (2016) Removal of uranium and associated contaminants from aqueous solutions using functional carbon nanotubes-sodium alginate conjugates. Minerals 6:9. https://doi.org/10.3390/min6010009

    Article  CAS  Google Scholar 

  41. Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52. https://doi.org/10.1016/j.cej.2013.01.038

    Article  CAS  Google Scholar 

  42. Kim JH, Lee HI, Yeon J-W, Jung Y, Kim JM (2010) Removal of uranium(VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. J Radioanal Nucl Chem 286:129–133. https://doi.org/10.1007/s10967-010-0624-3

    Article  CAS  Google Scholar 

  43. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188. https://doi.org/10.1039/c2dt00054g

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283. https://doi.org/10.1016/j.cej.2013.09.034

    Article  CAS  Google Scholar 

  45. Ouyang J, Wang Y, Li T, Zhou L, Liu Z (2018) Immobilization of carboxyl-modified multiwalled carbon nanotubes in chitosan-based composite membranes for U(VI) sorption. J Radioanal Nucl Chem 317:1419–1428. https://doi.org/10.1007/s10967-018-5993-z

    Article  CAS  Google Scholar 

  46. Chen Y, Ning P, Miao R, He L, Guan Q (2021) Resource utilization of agricultural residues: one-step preparation of biochar derived from Pennisetum giganteum for efficiently removing chromium from water in a wide pH range. Environ Sci Pollut Res 28:69381–69392. https://doi.org/10.1007/s11356-021-15388-y

    Article  CAS  Google Scholar 

  47. Wang Y, Wang Z, Ang R, Yang J, Liu N, Liao J, Yang Y, Tang J (2015) Synthesis of amidoximated graphene oxide nanoribbons from unzipping of multiwalled carbon nanotubes for selective separation of uranium(vi). RSC Adv 5:89309–89318. https://doi.org/10.1039/c5ra15977f

    Article  CAS  Google Scholar 

  48. Wang Z, Kang HJ, Zhang W, Zhang SF, Li JZ (2017) Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms. Appl Surf Sci 401:271–282. https://doi.org/10.1016/j.apsusc.2017.01.015

    Article  CAS  Google Scholar 

  49. Song W, Wang X, Wang Q, Shao D, Wang X (2015) Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Phys Chem Chem Phys 17:398–406. https://doi.org/10.1039/c4cp04289a

    Article  CAS  PubMed  Google Scholar 

  50. Liu S, Li J, Xu S, Wang M, Zhang Y, Xue X (2019) A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature. Bioresour Technol 282:48–55. https://doi.org/10.1016/j.biortech.2019.02.092

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Lin X, He Y, Luo X (2019) Phenolic hydroxyl derived copper alginate microspheres as superior adsorbent for effective adsorption of tetracycline. Int J Biol Macromol 136:445–459. https://doi.org/10.1016/j.ijbiomac.2019.05.165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province (No.2020JJ30579)

Author information

Authors and Affiliations

Authors

Contributions

YJ: Data curation, Writing—original draft. SX: Project administration, Supervision. YD, GW: Revising paper. YG, CW: Reviewing paper and English language polishing.

Corresponding author

Correspondence to Shuibo Xie.

Ethics declarations

Conflict of interest

There were no known conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 216 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, Y., Xie, S., Duan, Y. et al. Porous carboxylated carbon nanotubes hydrogel microspheres for removing U(VI) from aqueous solutions. J Radioanal Nucl Chem 332, 2679–2689 (2023). https://doi.org/10.1007/s10967-023-08916-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08916-2

Keywords

Navigation