Skip to main content
Log in

A thermal-responsive hydrogel to capture uranium(VI) from aqueous solution: properties and mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, a thermal-responsive hydrogel, sodium alginate/polyamidoxime/poly(N-isopropylacrylamide) hydrogel (SA/PAO/PNIPAm), was prepared via radical polymerization. The uranium (U) capturing properties of the hydrogel were investigated. The results reveal that SA/PAO/PNIPAm can effectively remove U(VI) from aqueous solution, and the maximal adsorption capacity was calculated to be 319.49 mg g−1 at 305.15 K and pH 5.0. Furthermore, the adsorption mechanism was revealed by X-ray photoelectron spectroscopy analysis and density functional theory simulations. In particular, high desorption efficiency was observed by changing the desorption temperature, which could reduce secondary pollutants in elution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang Z, Wang X, Zhou J, Zhang H, Wu F, Wu W (2022) Semi-IPN Alg/PAO microspheres for the efficient removal of U(VI) from alkaline solution by experimental and DFT study. Sep Purif Technol 296:121369

    Article  CAS  Google Scholar 

  2. Wang X, Dai X, Shi C, Wan J, Silver MA, Zhang L, Chen L, Yi X, Chen B, Zhang D, Yang K, Diwu J, Wang J, Xu Y, Zhou R, Chai Z, Wang S (2019) A 3,2-hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo. Nat Commun 10:2570

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yuan Y, Meng Q, Faheem M, Yang Y, Li Z, Wang Z, Deng D, Sun F, He H, Huang Y, Sha H, Zhu G (2019) A molecular coordination template strategy for designing selective porous aromatic framework materials for uranyl capture. ACS Cent Sci 5:1432–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jin T, Luo Q, Yu H, Huang B, Liu Z, Qian Y (2023) Synergistic effects between phytic acid (PA) and urea on the extraction of uranium with porous polyvinyl alcohol (PVA) xerogel films. Sep Purif Technol 312:123367

    Article  CAS  Google Scholar 

  5. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134:16441–16446

    Article  CAS  PubMed  Google Scholar 

  6. Liu C, Hsu P, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2:17007

    Article  CAS  Google Scholar 

  7. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2019) Correction: Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 48:6645–6645

    Article  CAS  PubMed  Google Scholar 

  8. Bolisetty S, Mezzenga R (2016) Amyloid–carbon hybrid membranes for universal water purification. Nat Nanotechnol 11:365–371

    Article  CAS  PubMed  Google Scholar 

  9. Xiong T, Li Q, Liao J, Zhang Y, Zhu W (2022) Highly enhanced adsorption performance to uranium(VI) by facile synthesized hydroxyapatite aerogel. J Hazard Mater 423:127184

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Li Y, Zhang Y, Zhang Z, Li Y, Li W (2021) Nanocellulose aerogel for highly efficient adsorption of uranium (VI) from aqueous solution. Carbohydr Polym 267:118233

    Article  CAS  PubMed  Google Scholar 

  11. Kuncham K, Nair S, Durani S, Bose R (2017) Efficient removal of uranium(VI) from aqueous medium using ceria nanocrystals: an adsorption behavioural study. J Radioanal Nucl Chem 313:101–112

    Article  CAS  Google Scholar 

  12. Yan B, Ma C, Gao J, Yuan Y, Wang N (2020) An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv Mater 32:1906615

    Article  CAS  Google Scholar 

  13. Elwakeel KZ, Atia AA (2014) Uptake of U(VI) from aqueous media by magnetic Schiff’s base chitosan composite. J Clean Prod 70:292–302

    Article  CAS  Google Scholar 

  14. Yu S, Wei D, Shi L, Ai Y, Zhang P, Wang X (2019) Three-dimensional graphene/titanium dioxide composite for enhanced U(VI) capture: insights from batch experiments, XPS spectroscopy and DFT calculation. Environ Pollut 251:975–983

    Article  CAS  PubMed  Google Scholar 

  15. Sun Z, Chen Y, Liu Y, Na B, Meng C, Zhang S, Zou S, Liu H (2021) A proton-exchange poly(acrylic acid) supramolecular hydrogel for ultrahigh uranium adsorption. J Mater Chem A 9:21402–21409

    Article  CAS  Google Scholar 

  16. Tan J, Xie S, Wang G, Yu CW, Zeng T, Cai P, Huang H (2020) Fabrication and optimization of the thermo-sensitive hydrogel carboxymethyl cellulose/poly(N-isopropylacrylamide-co-acrylic acid) for U(VI) removal from aqueous solution. Polymers 12:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim Y-J, Narain R, Idota N, Hoffman JM (2014) Smart hydrogels. Smart Biomaterials 1:9–65

    Article  Google Scholar 

  18. Si Z, Yu P, Dong Y, Lu Y, Tan Z, Yu X, Zhao R, Yan Y (2019) Thermo-responsive molecularly imprinted hydrogels for selective adsorption and controlled release of phenol from aqueous solution. Front Chem 6:1–10

    Article  Google Scholar 

  19. Zhu J, Luo Y, Wang J, Yu J, Liu Q, Liu J, Chen R, Liu P, Wang J (2022) Highly efficient uranium extraction by aminated lignin-based thermo-responsive hydrogels. J Mol Liq 368:120744

    Article  CAS  Google Scholar 

  20. Yang S, Xu M, Yin J, Zhao T, Li C, Hua D (2020) Thermal-responsive ion-imprinted magnetic microspheres for selective separation and controllable release of uranium from highly saline radioactive effluents. Sep Purif Technol 246:116917

    Article  CAS  Google Scholar 

  21. Backes S, Krause P, Tabaka W, Witt MU, von Klitzing R (2017) Combined cononsolvency and temperature effects on adsorbed PNIPAm microgels. Langmuir 33:14269–14277

    Article  CAS  PubMed  Google Scholar 

  22. Kafetzi M, Borchert KBL, Steinbach C, Schwarz D, Pispas S, Schwarz S (2021) Thermoresponsive PNIPAm-b-PAA block copolymers as “smart” adsorbents of Cu(II) for water restore treatments. Colloids Surf A Physicochem Eng Asp 614:126049

    Article  CAS  Google Scholar 

  23. Neese F (2022) Software update: the ORCA program system—Version 5.0. Wiley Interdiscip Rev Comput Mol Sci 12:e1606

    Article  Google Scholar 

  24. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  27. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  28. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  29. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  30. Lu T, Chen Q (2022) Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J Comput Chem 43:539–555

    Article  CAS  PubMed  Google Scholar 

  31. Huang N, Wang J, Cheng X, Xu Y, Li W (2020) Fabrication of PNIPAm-chitosan/decatungstoeuropate/silica nanocomposite for thermo/pH dual-stimuli-responsive and luminescent drug delivery system. J Inorg Biochem 211:111216

    Article  CAS  PubMed  Google Scholar 

  32. Hu Z, Omer AM, Ouyang Xk YuD (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int J Biol Macromol 108:149–157

    Article  CAS  PubMed  Google Scholar 

  33. Wang D, Song J, Wen J, Yuan Y, Liu Z, Lin S, Wang H, Wang H, Zhao S, Zhao X, Fang M, Lei M, Li B, Wang N, Wang X, Wu H (2018) Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv Energy Mater 8:1802607

    Article  Google Scholar 

  34. Liu S, Zhang H, Peng D, Yuan D, Wu L, Ma J (2017) Uranium uptake with graphene oxide sponge prepared by facile EDTA-assisted hydrothermal process. Int J Energy Res 41:263–273

    Article  CAS  Google Scholar 

  35. Wang X, Yuan L, Wang Y, Li Z, Lan J, Liu Y, Feng Y, Zhao Y, Chai Z, Shi W (2012) Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Sci China Chem 55:1705–1711

    Article  CAS  Google Scholar 

  36. Wei Y, Zhang L, Shen L, Hua D (2016) Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorption from aqueous solution. J Mol Liq 221:1231–1236

    Article  CAS  Google Scholar 

  37. Choppin GR (2006) Actinide speciation in aquatic systems. Mar Chem 99:83–92

    Article  CAS  Google Scholar 

  38. He N, Li H, Cheng C, Dong H, Lu X, Wen J, Wang X (2020) Enhanced marine applicability of adsorbent for uranium via synergy of hyperbranched poly(amido amine) and amidoxime groups. Chem Eng J 395:125162

    Article  CAS  Google Scholar 

  39. Yu K, Shao P, Meng P, Chen T, Lei J, Yu X, He R, Yang F, Zhu W, Duan T (2020) Superhydrophilic and highly elastic monolithic sponge for efficient solar-driven radioactive wastewater treatment under one sun. J Hazard Mater 392:122350

    Article  CAS  PubMed  Google Scholar 

  40. Zhu W, Peng H, Luo M, Yu N, Xiong H, Wang R, Li Y (2018) Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples. Food Chem 261:87–95

    Article  CAS  PubMed  Google Scholar 

  41. Zhang S, Yuan D, Zhang Q, Wang Y, Liu Y, Zhao J, Chen B (2020) Highly efficient removal of uranium from highly acidic media achieved using a phosphine oxide and amino functionalized superparamagnetic composite polymer adsorbent. J Mater Chem A 8:10925–10934

    Article  CAS  Google Scholar 

  42. Ahmad Z, Li Y, Ali S, Yang J, Jan F, Fan Y, Gou X, Sun Q, Chen J (2022) Benignly-fabricated supramolecular poly(amidoxime)-alginate-poly(acrylic acid) beads synergistically enhance uranyl capture from seawater. Chem Eng J 441:136076

    Article  CAS  Google Scholar 

  43. Ma C, Gao J, Wang D, Yuan Y, Wen J, Yan B, Zhao S, Zhao X, Sun Y, Wang X, Wang N (2019) Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater. Adv Sci 6:1900085

    Article  Google Scholar 

  44. Wang M, Liu H, Zeng M, Liu Y (2022) Preparation of PAMAm dendrimer modified amidoxime chelating resin and its adsorption for U(VI) in aqueous. Inorg Chem Commun 144:109909

    Article  CAS  Google Scholar 

  45. Zhang Y, Zhang H, Liu Q, Chen R, Liu J, Yu J, Jing X, Zhang M, Wang J (2018) Polypyrrole modified Fe0-loaded graphene oxide for the enrichment of uranium(VI) from simulated seawater. Dalton Trans 47:12984–12992

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Yao H, Chen L, Yu Z, Yang L, Li C, Shi K, Li C, Ma S (2021) Highly efficient capture of uranium from seawater by layered double hydroxide composite with benzamidoxime. Sci Total Environ 759:143483

    Article  CAS  PubMed  Google Scholar 

  47. Huang G, Li W, Liu Q, Liu J, Zhang H, Li R, Li Z, Jing X, Wang J (2018) Efficient removal of uranium(VI) from simulated seawater with hyperbranched polyethylenimine (HPEI)-functionalized polyacrylonitrile fibers. New J Chem 42:168–176

    Article  CAS  Google Scholar 

  48. Zhang H, Omer AM, Hu Z, Yang L, Ji C, Ouyang X (2019) Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu(II) adsorption. Int J Biol Macromol 135:490–500

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Q, Zhao D, Feng S, Wang Y, Jin J, Alsaedi A, Hayat T, Chen C (2019) Synthesis of nanoscale zero-valent iron loaded chitosan for synergistically enhanced removal of U(VI) based on adsorption and reduction. J Colloid Interface Sci 552:735–743

    Article  CAS  PubMed  Google Scholar 

  50. Tang S, Yang J, Lin L, Peng K, Chen Y, Jin S, Yao W (2020) Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem Eng J 393:124728

    Article  CAS  Google Scholar 

  51. Hu Z, Omer AM, Ouyang X, Yu D (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int J Biol Macromol 108:149–157

    Article  CAS  PubMed  Google Scholar 

  52. Yang X, Li J, Liu J, Tian Y, Li B, Cao K, Liu S, Hou M, Li S, Ma L (2014) Simple small molecule carbon source strategy for synthesis of functional hydrothermal carbon: preparation of highly efficient uranium selective solid phase extractant. J Mater Chem A 2:1550–1559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 22166002, 22066004, 52162020, and 52164012), and are extremely thankful to the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (2022RGET16) for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest that can influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 366 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Meng, C., Liu, S. et al. A thermal-responsive hydrogel to capture uranium(VI) from aqueous solution: properties and mechanism. J Radioanal Nucl Chem 332, 4449–4461 (2023). https://doi.org/10.1007/s10967-023-09141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09141-7

Keywords

Navigation