Skip to main content
Log in

Development of environment-friendly magnetic nanobiocomposites and full factorial design (FFD) analysis for strontium removal from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, magnetic (Fe3O4) nanobiocomposite were synthesized by a co-precipitation method using pectin biopolymer as a stabilizer. Nanobiocomposites were characterized via several characterization methods. The particle size and surface area of the nanobiocomposite were found as 5.76 nm 94.651 m2/g, respectively. The TEM and SEM results indicated that the spherical nanoparticles were well dispersed into the polymer matrix. Optimal adsorption parameters were determined using FFD. It was determined that pH and initial concentration are the main effects on the Sr(II) removal. Maximum sorption capacities according to D–R and Langmuir isotherms were determined as 0.018 mol/g and 26.455 mg/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zuo R, Meng L, Guan X, Wang Y, Yang J (2019) Removal of strontium from aqueous solutions by acrylamide-modified attapulgite. J Radioanal Nucl Chem 319:1207–1217

    Article  CAS  Google Scholar 

  2. Cakir P, Inan S, Altas Y (2014) Investigation of strontium and uranium sorption onto zirconium–antimony oxide/polyacrylonitrile (Zr–Sb oxide/PAN) composite using experimental design. J Hazard Mater 271:108–119

    Article  CAS  PubMed  Google Scholar 

  3. Shubair T, Eljamal O, Tahara A, Sugihara Y, Matsunaga N (2019) Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters. J Mol Liq 288:111026

    Article  CAS  Google Scholar 

  4. Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    Article  CAS  PubMed  Google Scholar 

  5. Faghihian H, Iravani M, Moayed M, Ghannadi-Maragheh M (2013) Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: kinetic, equilibrium, and thermodynamic studies. Chem Eng J 222:41–48

    Article  CAS  Google Scholar 

  6. Bayramoglu G, Arica MY (2019) Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution. Chem Eng Res Des 147:146–159

    Article  CAS  Google Scholar 

  7. Vipin AK, Ling S, Fugetsu B (2016) Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous Mesoporous Mater 224:84–88

    Article  CAS  Google Scholar 

  8. Oral AE, Aytas S, Yusan S, Sert S, Gok C, Elmastas Gultekin O (2020) Preparation and characterization of a graphene-based magnetic nanocomposite for the adsorption of lanthanum ions from aqueous solution. Anal Lett 53:1812–1833

    Article  CAS  Google Scholar 

  9. İnan S (2022) Inorganic ion exchangers for strontium removal from radioactive waste: a review. J Radioanal Nucl Chem 331:1137–1154

    Article  Google Scholar 

  10. Cheng J-G, Leng Y, Gu R, Yang G, Wang Y, Tuo X (2021) Adsorption of uranium (VI) from groundwater by amino-functionalized clay. J Radioanal Nucl Chem 327:1365–1373

    Article  CAS  Google Scholar 

  11. Karmaker SC, Eljamal O, Saha BB (2021) Response surface methodology for strontium removal process optimization from contaminated water using zeolite nanocomposites. Environ Sci Pollut Res 28:56535–56551

    Article  CAS  Google Scholar 

  12. Guévar C, Hertz A, Brackx E, Barre Y, Grandjean A (2017) Mechanisms of strontium removal by a Ba-titanate material for the wastewater treatment. J Environ Chem Eng 5:4948–4957

    Article  Google Scholar 

  13. Asl SH, Ahmadi M, Ghiasvand M, Tardast A, Katal R (2013) Artificial neural network (ANN) approach for modeling of Cr(VI) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA). J Ind Eng Chem 19:1044–1055

    Article  CAS  Google Scholar 

  14. Paudyal H, Pangeni B, Inoue K, Ohto K, Kawakita H, Kn G, Harada H, Alam S (2014) Adsorptive removal of strontium from water by using chemically modified orange juice residue. Sep Sci Technol 49:1244–1250

    Article  CAS  Google Scholar 

  15. Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A (2018) Pectin and pectin-based composite materials: beyond food texture. Molecules 23:942

    Article  PubMed  PubMed Central  Google Scholar 

  16. Özbay N, Yargıç AŞ, Yarbay-Şahin RZ, Önal E (2013) Full factorial experimental design analysis of reactive dye removal by carbon adsorption. J Chem 2013:13

    Article  Google Scholar 

  17. Mtaallah S, Marzouk I, Hamrouni B (2018) Factorial experimental design applied to adsorption of cadmium on activated alumina. J Water Reuse Desalin 8:76–85

    Article  CAS  Google Scholar 

  18. Wang S, Zhang C, Chang Q (2017) Synthesis of magnetic crosslinked starch-graft-poly (acrylamide)-co-sodium xanthate and its application in removing heavy metal ions. J Exp Nanosci 12:270–284

    Article  CAS  Google Scholar 

  19. Liang Z, Wu X, Xie Y, Liu S (2012) A facile approach to fabricate water-soluble Au-Fe3O4 nanoparticle for liver cancer cells imaging. Chin J Chem 30:1387–1392

    Article  CAS  Google Scholar 

  20. Hariani PL, Faizal M, Ridwan R, Marsi, Setiabudidaya D (2013) Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int J Environ Sci Dev 4(3):336–434

    Article  CAS  Google Scholar 

  21. Naushad M, Ahamad T, Sharma G, Al-Muhtaseb AH, Albadarin AB, Alam MM, ALOthman ZA, Alshehri SM, Ghfar AA (2016) Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem Eng J 300:306–316

    Article  CAS  Google Scholar 

  22. Verma P, Pal S, Chauhan S, Mishra A, Sinha I, Singh S, Srivastava V (2020) Starch functionalized magnetite nanoparticles: a green, biocatalyst for one-pot multicomponent synthesis of imidazopyrimidine derivatives in aqueous medium under ultrasound irradiation. J Mol Struct 1203:127410

    Article  CAS  Google Scholar 

  23. Cana MY, Yıldız E (2006) Phosphate removal from water by fly ash: factorial experimental design. J Hazard Mater B135:165–170

    Article  Google Scholar 

  24. Carmona MER, da Silva MAP, Leite SGF (2005) Biosorption of chromium using factorial experimental design. Process Biochem 40:779–788

    Article  CAS  Google Scholar 

  25. Wang M, Xu L, Peng J, Zhai M, Li J, Wei G (2009) Adsorption and desorption of Sr(II) ions in the gels based on polysaccharide derivates. J Hazard Mater 171:820–826

    Article  CAS  PubMed  Google Scholar 

  26. Ghorbania F, Younesia H, Ghasempouria SM, Zinatizadeh AA, Aminia M, Daneshia A (2008) Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem Eng J 145:267–275

    Article  Google Scholar 

  27. Bampaiti A, Yusan S, Aytas S, Pavlidou E, Noli F (2016) Investigation of uranium biosorption from aqueous solutions by Dictyopteris polypodioides brown algae. J Radioanal Nucl Chem 307:1335–1343

    Article  CAS  Google Scholar 

  28. Dada A, Olalekan A, Olatunya A, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45

    Article  Google Scholar 

  29. Senthil Kumar P, Abhinaya RV, Gayathri Lashmi K, Arthi V, Pavithra R, Sathyaselvabala V, Dinesh Kirupha S, Sivanesan S (2011) Adsorption of methylene blue dye from aqueous solution by agricultural waste: equilibrium, thermodynamics, kinetics, mechanism and process design. Colloid J 73:651–661

    Article  CAS  Google Scholar 

  30. Yusan S, Gok C, Erenturk S, Aytas S (2012) Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: evaluation of equilibrium, kinetic and thermodynamic data. Appl Clay Sci 67–68:106–116

    Article  Google Scholar 

  31. Faghihian H, Iravani M, Moayed M (2015) Application of PAN-NaY composite for Cs+ and Sr2+ adsorption: kinetic and thermodynamic studies. Environ Prog Sustain 34:999–1008

    Article  CAS  Google Scholar 

  32. Wang L, Liu X, Chen X, Lee D, Tay J, Zhang Y, Wan C (2015) Biosorption of Sr(II) from aqueous solutions using aerobic granules: equilibrium and mechanisms. J Radioanal Nucl Chem 306:193–202

    Article  CAS  Google Scholar 

  33. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M (2015) Strontium(II) adsorption on Sb(III)/Sb2O5. Chem Eng J 267:245–252

    Article  CAS  Google Scholar 

  34. Tel H, Altas Y, Eral M, Sert S, Çetinkaya B, Inan S (2010) Preparation of ZrO2 and ZrO2–TiO2 microspheres by the sol–gel method and an experimental design approach to their strontium adsorption behaviours. Chem Eng J 161:151–160

    Article  CAS  Google Scholar 

  35. Gurboga G, Tel H (2005) Preparation of TiO2–SiO2 mixed gel spheres for strontium adsorption. J Hazard Mater 120:135–142

    Article  PubMed  Google Scholar 

  36. Zhang N, Liu S, Jiang L, Luo M, Chi C, Ma J (2015) Adsorption of strontium from aqueous solution by silica mesoporous SBA-15. J Radioanal Nucl Chem 303:1671–1677

    CAS  Google Scholar 

  37. Ahmadi SJ, Akbari N, Shiri-Yekta Z, Mashhadizadeh MH, Hosseinpour M (2015) Removal of strontium ions from nuclear waste using synthesized MnO2–ZrO2 nano-composite by hydrothermal method in supercritical condition. Korean J Chem Eng 32:478–485

    Article  CAS  Google Scholar 

  38. Romanchuk A, Slesarev A, Kalmykov S, Kosynkin D, Tour J (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15:2321–2327

    Article  CAS  PubMed  Google Scholar 

  39. Smičiklas I, Dimović S, Šljivić M, Plećaš I (2007) The batch study of Sr2+ sorption by bone char. J Environ Sci Health A 48:210–217

    Google Scholar 

  40. Wen T, Wu X, Liu M, Xing Z, Wang X, Xu A (2014) Efficient capture of strontium from aqueous solutions using graphene oxide–hydroxyapatite nanocomposites. Dalton Trans 43:464–7472

    Article  CAS  Google Scholar 

  41. Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M (2011) Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder. J Hazard Mater 190:916–921

    Article  CAS  PubMed  Google Scholar 

  42. Bulut A, Yusan S, Aytas S, Sert S (2018) The use of sea shell (Donax trunculus) powder to remove Sr(II) ions from aqueous solutions. Water Sci Technol 78(4):827–836

    Article  CAS  PubMed  Google Scholar 

  43. Lalhmunsiama, Tiwari D, Lee SM (2015) Physico-chemical studies in the removal of Sr(II) from aqueous solutions using activated sericite. J Environ Radioact 147:76–84

    Article  CAS  PubMed  Google Scholar 

  44. Faghihian H, Moayed M, Firooz A, Iravani M (2014) Evaluation of a new magnetic zeolite composite for removal of Cs+ and Sr2+ from aqueous solutions: kinetic, equilibrium and thermodynamic studies. C R Chim 17(2):108–117

    Article  CAS  Google Scholar 

  45. Hafizi M, Abolghasemi H, Moradi M, Milani SA (2011) Strontium adsorption from sulfuric acid solution by Dowex 50W-X resins. Chin J Chem Eng 19(2):267–272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Ege University Scientific Research Project Unit Project No. FGA-2019-20444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabriye Yusan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusan, S., Aytas, S., Sert, S. et al. Development of environment-friendly magnetic nanobiocomposites and full factorial design (FFD) analysis for strontium removal from aqueous solutions. J Radioanal Nucl Chem 332, 591–606 (2023). https://doi.org/10.1007/s10967-023-08803-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08803-w

Keywords

Navigation