Skip to main content
Log in

Adsorption of uranium(VI) from groundwater by amino-functionalized clay

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A kind of amino-functionalized clay was prepared by grafting APTES from clay in the Alxa area (Inner Mongolia, China), and its application for the U(VI) removal from Alxa groundwater was studied in this work. The results indicate that the sorption strongly depended on the pH and ions. The presence of amino functional groups significantly enhances the adsorption of uranium on clay in groundwater. The sorption isotherms fitted well with the Langmuir model, whereas the sorption kinetics could be fitted by a pseudo-second-order model. These findings indicate that amino-functionalized clay can effectively adsorb U(VI) in complex groundwater samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49(7):4255–4262

    Article  CAS  PubMed  Google Scholar 

  2. Wang XX, Fan QF, Yu SJ, Chen ZS, Ai YJ, Sun YB, Wang XK (2016) Retracted: high sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem Eng J 287:448–455

    Article  CAS  Google Scholar 

  3. Sun YB, Li JX, Wang XK (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643

    Article  CAS  Google Scholar 

  4. Xiao J, Chen Y, Zhao W, Xu J (2013) Sorption behavior of U(VI) onto Chinese bentonite: effect of pH, ionic strength, temperature and humic acid. J Mol Liq 188:178–185

    Article  CAS  Google Scholar 

  5. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41(20):6182–6188

    Article  CAS  PubMed  Google Scholar 

  6. Ren XM, Wang SW, Yang ST, Li JX (2013) Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. J Radioanal Nuclear Chem 283(1):253–259

    Article  Google Scholar 

  7. Zarrougui R, Mdimagh R, Raouafi N (2017) Highly efficient extraction and selective separation of uranium(VI) from transition metals using new class of undiluted ionic liquids based on h-phosphonate anions. J Hazard Mater 342:464

    Article  PubMed  Google Scholar 

  8. Wang J, Chen Z, Shao D, Li Y, Hu S (2017) Adsorption of U(VI) on bentonite in simulation environmental conditions. J Mol Liq 242:678–684

    Article  CAS  Google Scholar 

  9. Ye Z, Yin X, Chen L, He X, Wei Y (2019) An integrated process for removal and recovery of Cr(VI) from electroplating wastewater by ion exchange and reduction–precipitation based on a silica-supported pyridine resin. J Clean Prod 236:117631

    Article  CAS  Google Scholar 

  10. Kahraman HT, Pehlivan E (2019) Evaluation of anion-exchange resins on the removal of Cr(VI) polluted water: batch ion-exchange modeling. Arabian J Geosci 12(16):1–10

    Article  CAS  Google Scholar 

  11. Kumar BB, Jadhav UU, Munusamy M, Lianghui J, En-Hua Y, Bin C (2018) Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustain Chem Eng 6(9):12343–12352

    Article  Google Scholar 

  12. Turanov AN, Karandashev VK, Baulin VE, Baulin DV (2019) Extraction of Re(III), U(VI), and Th(IV) from perchlorate solutions with tetraphenyl(o-oxyphenylenemethylene)diphosphine dioxide. Radiochemistry 61(2):156–161

    Article  CAS  Google Scholar 

  13. Li P, Wang J, Wang Y, Liang J, He B, Pan D (2019) Photoconversion of u(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365(1):231–241

    Article  CAS  Google Scholar 

  14. Jakovetić S, Luković N, Jugović B, Gvozdenović M, Grbavčić S, Jovanović J, Knežević-Jugović Z (2015) Production of antioxidant egg white hydrolysates in a continuous stirred tank enzyme reactor coupled with membrane separation unit. Food Bioprocess Technol 8(2):287–300

    Article  Google Scholar 

  15. Zhao D, Yang S, Chen S, Guo Z, Yang X (2020) Correction to: effect of pH, ionic strength and humic substances on the adsorption of uranium(VI) onto Na-rectorite. J Radioanal Nuclear Chem 323(2):1013

    Article  CAS  Google Scholar 

  16. Xu Z, Xing YX, Ren AR, Ma DD, Li YX, Hu SH (2020) Study on adsorption properties of water hyacinth-derived biochar for uranium(VI). J Radioanal Nucl Chem 324(3):1317–1327

    Article  CAS  Google Scholar 

  17. Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Yuan L, Yuan Y, Lan J, Li Z, Feng Y (2012) A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nuclear Chem 292(2):803–810

    Article  CAS  Google Scholar 

  19. Kausar A, Iqbal M, Javed A, Aftab K, Nazli ZIH, Bhatti HN (2018) Dyes adsorption using clay and modified clay: a review. J Mol Liq 256:395–407

    Article  CAS  Google Scholar 

  20. Wang XL, Han ZH, Zhang LQ, Zhou J (2018) Regional engineering geology suitability assessment for high-level radioactive waste disposal of pre-selected Alxa area. J Eng Geol 26(6):1715–1723

    Google Scholar 

  21. Cheng JF, Leng YC, Lai J, Zhu S, Tuo XG (2017) Speciation and adsorption behavior of Pu in groundwater. Environ Chem 36(7):1630–1635

    CAS  Google Scholar 

  22. Al-Anber MA, Al-Momani IF, Zaitoun MA, Al-Qaisi W (2020) Inorganic silica gel functionalized tris(2-aminoethyl)amine moiety for capturing aqueous uranium(VI) ion. J Radioanal Nuclear Chem 325(1):605–623

    Article  CAS  Google Scholar 

  23. Huynh J, Rubén P, Allavena A, Hervé G, Batonneau-Gener I (2020) Selective adsorption of U(VI) from real mine water using an NH2-functionalized silica packed column. Chem Eng J 405(1):126912

    Google Scholar 

  24. Tobilko V, Spasonova L, Kovalchuk I (2019) Adsorption of uranium(VI) from aqueous solutions by amino-functionalized clay minerals. Coll Interfaces 3(1):41

    Article  CAS  Google Scholar 

  25. Li ZY, Pan ZD, Wang YM (2019) Enhanced adsorption of cationic Pb(II) and anionic Cr(VI) ions in aqueous solution by amino-modified nano-sized illite-smectite clay. Environ Sci Pollut Res Int 26(11):11126–11139

    Article  CAS  PubMed  Google Scholar 

  26. Asgari M, Abouelmagd A, Sundararaj U (2017) Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites. Appl Clay Sci 146:439–448

    Article  CAS  Google Scholar 

  27. Moreira MA, Ciuffi KJ, Rives V, Vicente MA, Trujillano R, Gil A (2016) Effect of chemical modification of palygorskite and sepiolite by 3-aminopropyltriethoxisilane on adsorption of cationic and anionic dyes. Appl Clay Sci 135(JAN.):394–404

    Google Scholar 

  28. Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349(1):293–299

    Article  CAS  PubMed  Google Scholar 

  29. Zhou LM, Ouyang JB, Shehzad H, Le ZG, Adesina AA (2018) Adsorption of U(VI) onto the carboxymethylated chitosan/Na-bentonite membranes: kinetic, isothermic and thermodynamic studies. J Radioanal Nucl Chem 317:1–9

    Article  Google Scholar 

  30. Liu W, Zhang L, Chen F, Wang H, Wang Q, Liang K (2020) Efficiency and mechanism of adsorption of low-concentration uranium from water by a new chitosan/aluminum sludge composite aerogel. Dalton Trans 49(10):3209–3221

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Zhai S, Li S, Xiao Z, Song Y, An Q (2013) Pb(II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel proce. Chem Eng J 215:461–471

    Article  Google Scholar 

  32. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  33. Zhou LM, Ouyang J, Liu Z, Huang G, Wang Y, Li Z (2019) Highly efficient sorption of U(VI) from aqueous solution using amino/amine-functionalized magnetic mesoporous silica nanospheres. J Radioanal Nucl Chem 319:987–995

    Article  CAS  Google Scholar 

  34. Tan L, Tan X, Ren X, Mei H, Wang X (2018) Influence of pH, soil humic acid, ionic strength and temperature on sorption of U(VI) onto attapulgite. J Radioanal Nucl Chem 316:981–991

    Article  CAS  Google Scholar 

  35. Li S, Wang X, Huang Z, Du L, Tan Z, Fu Y (2016) Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances. J Radioanal Nuclear Chem 308(3):877–886

    Article  CAS  Google Scholar 

  36. Atia AA (2005) Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy 80(1–2):13–22

    Article  CAS  Google Scholar 

  37. Shen H, Pan S, Zhang Y, Huang X, Gong H (2012) A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu(II), Cr(VI) co-existing water system. Chem Eng J 183:180–191

    Article  CAS  Google Scholar 

  38. Bulut Y, Aydın H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194(1–3):259–267

    Article  CAS  Google Scholar 

  39. Langmuir I (2015) The adsorption of gases on plane surfaces of glass, mica and platinum. J Chem Phys 40(9):1361–1403

    Google Scholar 

  40. Freundlich H (1907) Over the adsorption in solution. J Phys Chem 57(1):385–470

    CAS  Google Scholar 

  41. Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70(6):1379–1387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from National Natural Science Foundation of China Younth Fun (No. 41603124) and National Natural Science Foundation of China (No. 41630646) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Tuo.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Leng, Y., Gu, R. et al. Adsorption of uranium(VI) from groundwater by amino-functionalized clay. J Radioanal Nucl Chem 327, 1365–1373 (2021). https://doi.org/10.1007/s10967-021-07617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07617-y

Keywords

Navigation