Skip to main content
Log in

A new method for evaluation of diffusion coefficients of alpha emitters via mathematical treatment of alpha spectra

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The article describes the results of experiments on sorption of various alpha emitting radionuclides on thin-layer sorbents consisting of manganese dioxide layer coated onto polymer films. In these experiments, we have faced a phenomenon of increase of full width at half maximum of peaks at alpha spectra of the sorbents with the increase of sorption time. We have explained this phenomenon by diffusion of alpha emitters into the sorbents. We have suggested a method of mathematical treatment of the alpha spectra that allowed calculation of diffusion coefficients of the alpha emitters in flat samples. This method is suitable for cases of diffusion of radionuclides (T½ = several days to 106–107 years) in flat samples if time of diffusion is enough for migration of a radionuclide into the depth of the sample by at least 0.1–0.5 µm. The method was tested for the thin-layer manganese dioxide sorbents after sorption of Ra-223, U-233, Np-237, Th-230 and Po-210. It was found that mobility of the studied radionuclides in manganese dioxide layer followed in a series NpO2+  > Np4+  > Ra2+ ≈ UO22+ ≈ Th4+  > Po2+. The values of diffusion coefficients varied from 1.3 × 10–20 m2/s for Po-210 to 5.8 × 10–17 m2/s for Np-237.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdel-Rahman MAE, Lohstroh A, Bryant P (2019) Alpha spectroscopy and X-ray induced photocurrent studies of a SC CVD diamond detector fabricated with PLD contacts. Radiat Phys Chem 164:108357

    Article  CAS  Google Scholar 

  2. Bortot D, Pola A, Agosteo S, Pasquato S, Introini MV, Colautti P, Conte V (2017) A miniaturized alpha spectrometer for the calibration of an avalanche-confinement TEPC. Radiat Meas 106:531–537

    Article  CAS  Google Scholar 

  3. Pommé S (2022) Radionuclide metrology: confidence in radioactivity measurements. J Radioanal Nucl Chem (article in press). https://doi.org/10.1007/s10967-022-08494-9

    Article  Google Scholar 

  4. Yamamoto S, Tomita H (2018) Development of a high-resolution alpha-particle imaging system for detection of plutonium particles from the Fukushima Daiichi nuclear power plant. Radiat Meas 115:13–19

    Article  CAS  Google Scholar 

  5. Albendea P, Sierra I, Hernández C, Barrado AI, Yllera A (2020) Natural uranium isotopes determination in 24h-urine samples from exposed workers to enriched uranium. Radiat Phys Chem 174:108929

    Article  CAS  Google Scholar 

  6. Vukanac I, Šešlak B, Kandić A, Čeliković I, MladenovićNikolić N, Milanović T, Obradović Z, Đurašević M (2022) A comparison of alpha-particle and gamma-ray spectrometry methods for determination of 235U, 238U and 226Ra activity concentration in samples of coal, slag and fly-ash. Radiat Phys Chem 193:109933

    Article  CAS  Google Scholar 

  7. Yoon S, Kim Y, Ha WH, Jo MK, Park S, Kim J (2019) Improved urine analysis for polonium, natural uranium, and thorium isotopes and background survey in collected samples of normal people. J Radioanal Nucl Chem 322:1871–1875

    Article  CAS  Google Scholar 

  8. Cuesta E, Barba-Lobo A, Lozano RL, San Miguel EG, Mosqueda F, Bolívar JP (2022) A comparative study of alternative methods for 210Pb determination in environmental samples. Radiat Phys Chem 191:109840

    Article  CAS  Google Scholar 

  9. Pöllänen R, Siiskonen T, Vesterbacka P (2005) High-resolution alpha spectrometry from thick sources. Radiat Meas 39:565–568

    Article  Google Scholar 

  10. García-Toraño E (2006) Current status of alpha-particle spectrometry. Review Appl Radiat Isotop 64(10–11):1273–1280

    Article  Google Scholar 

  11. Ko YG (2020) Preparation and characterization of electrodeposited layers as alpha sources for alpha-particle spectrometry (Review). J Radioanal Nucl Chem 326(2):861–877

    Article  CAS  Google Scholar 

  12. Bickel M et al (2000) Radiochemistry: inconvenient but indispensable. Appl Radiat Isotop 53(1–2):5–7

    Article  CAS  Google Scholar 

  13. Krupp D, Scherer UW (2018) Prototype development of ion exchanging alpha detectors. Nucl Inst Method Phys Res A 897:120–128

    Article  CAS  Google Scholar 

  14. Babeliowsky T, Bortels G (1993) ALFA: A program for accurate analysis. Appl Radiat Isotop 44(10/11):1349–1358

    Article  CAS  Google Scholar 

  15. Cerda V (2019) Automation of radiochemical analysis by flow techniques. A Rev Trends Anal Chem 118:352–367

    Article  CAS  Google Scholar 

  16. Von Helfferich F (1959) Ionenaustauscher - Grundlagen Struktur. Theorie (Verlag Chemie GMBH-Weinheim Bergstr, Herstellung

    Google Scholar 

  17. Magill J, Pfenning G, Dreher R, Soti Z (2012) Chart of the Nuclides (Karlsruher Nuclidkarte), 8th edition. (Nucleonica GmbH, Karlsruher, 2012)

  18. Rychkov VN et al (2018) Radiochemical characterization and decontamination of rare-earth-element concentrate recovered from uranium leach liquors. J Radioanal Nucl Chem 317(1):203–213

    Article  CAS  Google Scholar 

  19. Lewatit TP-260 Resin product sheet https://www.lenntech.com/Data-sheets/Lewatit-TP-260-L.pdf (accessed 10.09.2022)

  20. Fan F et al (2020) Rapid separation of Po-210 from Pb-210 based on the usage of a commercial Sr-Specific chromatographic resin. J Environ Radioactiv 211:106083

    Article  CAS  Google Scholar 

  21. Vajda N, LaRosa J, Zeisler R, Danesi P, Kis-Benedek G (1997) A novel technique for the simultaneous determination of 210Pb and 210Po using a crown ether. J Environ Radioactiv 37:355–372

    Article  CAS  Google Scholar 

  22. Rychkov VN et al (2016) Deactivation of the scandium concentrate recovered from uranium leach liquors. J Radioanal Nucl Chem 310(3):1247–1253

    Article  CAS  Google Scholar 

  23. Semenishchev VS, Tomashova LA, Titova SM (2021) The study of radium and polonium sorption by a thin-layer MnO2-CTA sorbent. J Radioanal Nucl Chem 327(2):997–1003

    Article  CAS  Google Scholar 

  24. Knoll GF (1979) Radiation detection and measurement. John Wiley and Sons Inc, New York

    Google Scholar 

  25. Interaction of heavy charged particles with a substance: http://nuclphys.sinp.msu.ru/partmat/pm01.htm#(1) (In Russian, accessed 10.09.2022).

  26. Severin AV, Gopin AV, Vasiliev AN, Enikeev KI (2021) Diffusion and Sorption of Radium and Strontium in a Layer of Porous Sorbent Based on Hydroxyapatite. Radiochemistry 63:51–55

    Article  CAS  Google Scholar 

  27. Chakraborty P, Gueneau C, Chartier A (2020) Modelling of plutonium diffusion in (U, Pu)O2±x mixed oxide. Solid State Ionics 357:115503

    Article  CAS  Google Scholar 

  28. Brookings DG (1988) Eh–pH Diagrams for geochemistry. Springer-Verlag, Heidelberg

    Book  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, project number 20-03-00931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Semenishchev.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenishchev, V.S., Polyakov, E.V., Kulyashova, E.N. et al. A new method for evaluation of diffusion coefficients of alpha emitters via mathematical treatment of alpha spectra. J Radioanal Nucl Chem 332, 153–165 (2023). https://doi.org/10.1007/s10967-022-08689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08689-0

Keywords

Navigation