Skip to main content
Log in

Preparation and characterization of electrodeposited layers as alpha sources for alpha-particle spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In various methods to determine alpha-emitting radionuclides in matrices, alpha-particle spectrometry with alpha-emitting sources prepared by the electrodeposition has been widely used. Although there are several good review papers on alpha-particle spectrometry and preparation of electrodeposited alpha-emitting sources, the mechanism of analysis procedure and characterizations of alpha-emitting sources have not been reported well. These untouched subjects by other review papers are very significant to improve the analysis procedure. This review focuses on the mechanism of the electrodeposition of alpha-emitting radionuclides on the stainless steel disc, factors for the preparation of electrodeposited alpha-emitting layers, and various characterization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hutchison SG, Hutchison FI (1997) Radioactivity in everyday life. J Chem Edu 74:501–505

    CAS  Google Scholar 

  2. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    CAS  Google Scholar 

  3. Coggle JE, Lambert BE, Moores SR (1986) Radiation effects in the lung. Environ Health Perspect 70:261–291

    CAS  Google Scholar 

  4. De Kruijff RM, Wolterbeek HT, Denkova AG (2015) A critical review of alpha radionuclide theraphy—how to deal with recoiling daughters? Pharmaceuticals 8:321–336

    Google Scholar 

  5. Xu Y, Qiao J, Hou X, Pan S, Roos P (2014) Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements. Talanta 119:590–595

    CAS  Google Scholar 

  6. Becker JS (2005) Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides. Int J Mass Spectrom 242:183–195

    CAS  Google Scholar 

  7. Vajda N, Martin P, Kim C-K (2012) In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 3rd edn. Academic Press, San Diego, pp 363–422

    Google Scholar 

  8. Armstrong CR, Nuessle PR, Brant HA, Hall G, Halverson JE, Cadieux JR (2015) Plutonium isotopes in the terrestrial environment at the Savannah river site, USA: a long-term study. Environ Sci Technol 49:1286–1293

    CAS  Google Scholar 

  9. Trdin M, Nečemer M, Benedik L (2017) Fast decomposition procedure of solid samples by lithium borates fusion employing salicylic acid. Anal Chem 89:3169–3176

    CAS  Google Scholar 

  10. Dion MP, Liezers M, Farmer OT III, Miller BW, Morley S, Barinaga C, Eiden G (2015) Improving alpha spectrometry energy resolution by ion implantation with ICP-MS. J Radioanal Nucl Chem 303:877–884

    CAS  Google Scholar 

  11. Krmpotić MK, Rožmarić M, Benedik L (2017) Evaluation of several electrolyte mixture-cathode material combinations in electrodeposition of americium radioisotopes for alpha-spectrometric measurements. Appl Radiat Isot 128:158–164

    Google Scholar 

  12. Kurihara O, Saito F, Koarashi J, Kim E, Shiraishi K, Yamada Y, Akashi M (2011) Emission rates of alpha particles from supports with different surface conditions in direct deposition sources. Radiat Prot Dosim 145:13–20

    CAS  Google Scholar 

  13. García-Toraño E, Crespo MT, Roteta M, Sibbens G, Pommé S, Sánchez AM, Montero MPR, Woods S, Pearce A (2005) α-particle emission probabilities in the decay of 235U. Nucl Instrum Methods Phys Res A 550:581–592

    Google Scholar 

  14. Goliáš V, Pittauerová D, Procházka R, Třískala Z (2005) Field alpha-spectroscopy of radon (222Rn) and action (219Rn) progeny in soil gas: locating a radon source. J Radioanal Nucl Chem 266:461–470

    Google Scholar 

  15. Fernández PL, Gómez J, Ródenas C (2012) Evaluation of uncertainty detection limits in 210Pb and 210Po measurement in water by alpha spectrometry using 210Po spontaneous deposition onto a silver disk. Appl Radiat Isot 70:758–764

    Google Scholar 

  16. Dai X (2011) Isotopic uranium analysis in urine samples by alpha spectrometry. J Radioanal Nucl Chem 289:595–600

    CAS  Google Scholar 

  17. Hanson SK, Mueller AH, Oldham WJ Jr (2014) Kläui ligand thin films for rapid plutonium analysis by alpha spectrometry. Anal Chem 86:1153–1159

    CAS  Google Scholar 

  18. Panta YM, Farmer DE, Johnson P, Cheney MA, Qian S (2010) Preparation of alpha sources using magnetohydrodynamic electrodeposition for radionuclide metrology. J Colloid Interface Sci 342:128–134

    CAS  Google Scholar 

  19. Crespo MT (2012) A review of electrodeposition methods for the preparation of alpha-radiation sources. Appl Radiat Isot 70:210–215

    CAS  Google Scholar 

  20. Aggarwal SK (2016) Alpha-particle spectrometry for the determination of alpha emitting isotopes in nuclear, environmental and biological samples: past, present and future. Anal Methods 8:5353–5371

    CAS  Google Scholar 

  21. Lally AE, Glover KM (1984) Source preparation in alpha spectrometry. Nucl Instrum Methods Phys Res 223:259–265

    CAS  Google Scholar 

  22. Jia G, Jia J (2012) Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. J Environ Radioact 106:98–119

    CAS  Google Scholar 

  23. Vajda N, Kim CK (2010) Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology. J Radioanal Nucl Chem 283:203–223

    CAS  Google Scholar 

  24. Kim C-S, Kim C-K, Martin P, Sansone U (2007) Determination of Pu isotope concentrations and isotope ratio by inductively coupled plasma mass spectrometry: a review of analytical methodology. J Anal At Spectrom 22:827–841

    CAS  Google Scholar 

  25. Glover KM (1984) Alpha-particle spectrometry and its applications. Int J Appl Radiat Isot 35:239–250

    CAS  Google Scholar 

  26. Bortels G (1991) Status of high-resolution alpha-particle spectrometry using Si detectors, EUR-1368613. In: Annual symposium on safeguards and nuclear material management, Avignon, France, 14–16 May, pp 159–163

  27. García-Toraño E (2006) Current status of alpha-particle spectrometry. Appl Radiat Isot 64:1273–1280

    Google Scholar 

  28. Pommé S (2015) Typical uncertainties in alpha-particle spectrometry. Metrologia 52:S146–S155

    Google Scholar 

  29. Jurečič S, Benedik L, Planinšek P, Nečemer M, Kump P, Pihlar B (2014) Analysis of uranium in the insoluble residues after decomposition of soil samples by various techniques. Appl Radiat Isot 87:61–65

    Google Scholar 

  30. Al-Masri MS, Amin Y (2005) Use of the Eurachem guide on method validation for determination of uranium in environmental samples. Accred Qual Assur 10:98–106

    CAS  Google Scholar 

  31. Benedik L, Trdin M (2017) Determination of low level Np-237 by various techniques. Appl Radiat Isot 126:208–213

    CAS  Google Scholar 

  32. Sill CW (1975) Some problems in measuring plutonium in the environment. Health Phys 29:619–626

    CAS  Google Scholar 

  33. Ko YG, Lim J-M, Lee H, Chung KH, Kang MJ (2016) Sequential separation method for the determination of uranium and thorium in soil using diamyl amylphosphonate and Aliquat®336 impregnated polymer resins. React Funct Polym 106:43–50

    CAS  Google Scholar 

  34. Maxwell SL, Culligan BK (2012) Rapid determination of 226Ra in environmental samples. J Radioanal Nucl Chem 293:149–156

    CAS  Google Scholar 

  35. Jia G, Torri G, Ocone R, Di Lullo A, De Angelis A, Boschetto R (2008) Determination of thorium isotopes in mineral and environmental water and soil samples by α-spectrometry and the fate of thorium in water. Appl Radiat Isot 66:1478–1487

    CAS  Google Scholar 

  36. Gascoyne M, Larocqe JPA (1984) A rapid method of extraction of uranium and thorium from granite for alpha spectrometry. Nucl Instrum Methods Phys Res 223:250–252

    CAS  Google Scholar 

  37. García de Madinabeitia S, Sánchez Lorda ME, Gil Ibarguchi JI (2008) Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Anal Chim Acta 625:117–130

    Google Scholar 

  38. Maxwell SL, Culligan B, Hutchison JB, Utsey RC, Sudowe R, McAlister DR (2016) Rapid method to determine actinides and 89/90Sr in limestone and marble samples. J Radioanal Nucl Chem 310:377–388

    CAS  Google Scholar 

  39. Maxwell SL, Hutchison JB, McAlister DR (2015) Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples. J Radioanal Nucl Chem 305:631–641

    CAS  Google Scholar 

  40. His C-KD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Acta 49:1931–1941

    Google Scholar 

  41. Bruno J, De Pablo J, Duro L, Figuerola E (1995) Experimental study and modeling of the U(VI)-Fe(OH)3 surface precipitation/coprecipitation equilibria. Geochim Cosmochim Acta 59:4113–4123

    CAS  Google Scholar 

  42. Holcomb HP (1964) Separation of americium from curium with calcium fluoride. Anal Chem 36:2329–2332

    CAS  Google Scholar 

  43. Doorn SK, Wright JC (1985) Comparison of calcium fluoride and lanthanum fluoride as host lattices for the determination of lanthanides by selective excitation of probe ion luminescence. Anal Chem 57:2869–2873

    CAS  Google Scholar 

  44. Schlyter K, Sillén LG (1950) On the coprecipitation of tetrapositive ions with lanthanum fluoride. Acta Chem Scand 4:1323–1325

    CAS  Google Scholar 

  45. Curti E (1997) Coprecipitation of radionuclides: basic concepts, literature review and first applications (PSI Bericht Nr. 97-10). Paul Scherrer Institut, Villigen

    Google Scholar 

  46. De Regge P, Boden R (1984) Review of chemical separation techniques applicable to alpha spectrometric measurements. Nucl Instrum Methods Phys Res 223:181–187

    Google Scholar 

  47. Dietz ML, Stepinski DC (2008) Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta 75:598–603

    CAS  Google Scholar 

  48. Tkac P, Vandegrift GF, Lumetta GJ, Gelis AV (2012) Study of the interaction between HDEHP and CMPO and its effect on the extraction of selected lanthanides. Ind Eng Chem Res 51:10433–10444

    CAS  Google Scholar 

  49. Sivakumar P, Meenakshi S, Mohan SV, Subba Rao RV, Venkataraman M (2012) Modified TTA method for the determination of plutonium. J Radioanal Nucl Chem 294:93–96

    CAS  Google Scholar 

  50. Vajda N, Kim C-K (2011) Determination of transuranium isotopes (Pu, Np, Am) by radiometric techniques: a review of analytical methodology. Anal Chem 83:4688–4719

    CAS  Google Scholar 

  51. Saha A, Deb SB, Sarkar A, Saxena MK, Tomar BS (2016) Simultaneous preconcentration of uranium and thorium in aqueous samples using cloud point extraction. RSC Adv 6:20109–20119

    CAS  Google Scholar 

  52. Uesugi M, Watanabe R, Sakai H, Yokoyama A (2018) Rapid method for determination of 90Sr in seawater by liquid scintillation counting with an extractive scintillator. Talanta 178:339–347

    CAS  Google Scholar 

  53. La Rosa J, Gastaud J, Lagan L, Lee S-H, Levy-Palomo I, Povinec PP, Wyse E (2005) Recent developments in the analysis of transuranics (Np, Pu, Am) in seawater. J Radioanal Nucl Chem 263:427–436

    Google Scholar 

  54. Vajda N, Kim C-K (2010) Determination of 241Am isotopes: a review of analytical methodology. J Radioanal Nucl Chem 284:341–366

    CAS  Google Scholar 

  55. Hellé G, Mariet C, Cote G (2015) Liquid-liquid extraction of uranium(VI) with Aliquat®336 from HCl media in microfluidic devices: combination of micro-unit operations and online ICP-MS determination. Talanta 139:123–131

    Google Scholar 

  56. Chan GYS, Drew MGB, Hudson MJ, Iveson PB, Liljenzin J-O, Skȧlberg M, Spjuth L, Madic C (1997) Solvent extraction of metal ions from nitric acid solution using N,N′-substituted malonamides. Experimental and crystallographic evidence for two mechanisms of extraction, metal complexation and ion-pair formation. J Chem Soc, Dalton Trans 4:649–660

    Google Scholar 

  57. Raut DR, Mohapatra PK, Ansari SA, Godbole SV, Iqbal M, Manna D, Ghanty TK, Huskens J, Verboom W (2013) Complexation of trivalent lanthanides and actinides with several novel diglycolamide-functionalized calix[4]arenes: solvent extraction, luminescence and theoretical studies. RSC Adv 3:9296–9303

    CAS  Google Scholar 

  58. Yamanaka K (2015) In: Kobayashi S, Müllen K (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Heidelberg, pp 1019–1026

    Google Scholar 

  59. Ansari SA, Mohapatra PK (2017) A review on solid phase extraction of actinides and lanthanides with amide based extractants. J Chromatogr A 1499:1–20

    CAS  Google Scholar 

  60. http://www.triskem-international.com. Accessed 11 April 2020

  61. http://www.eichrom.com. Accessed 11 April 2020

  62. Ban Y, Nomura M, Fujii Y (2002) Chromatographic separation of lithium isotopes with silica based monobenzo-15-crown-5 resin. J Nucl Sci Technol 39:279–281

    CAS  Google Scholar 

  63. Sarkisov L, Monson PA (2001) Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17:7600–7604

    CAS  Google Scholar 

  64. Maldonado EAL, Ochoa-Terán A, Guzmán MTO (2012) A multiparameter colloidal titrations for the determination of cationic polyelectrolytes. J Environ Protect 3:1559–1570

    Google Scholar 

  65. De Dardel F, Arden TV. In: Elvers B, Bellussi G, Bohnet M, Bus J, Drauz K, Faulhammer H, Greim H, Karst U, Kleemann A, Kutscher B, Meier W, Moran S, Mukherjee J, Palkovits R, Qiao G, Röper M, Sundmacher K, Ulber R, Wagemann K, Wietelmann U (eds) Ullmann’s Encyclopedia of industrial chemistry, vol 19, 7th edn. Wiley-VCH, Weinheim, pp 473–545

  66. Ko YG, Lim J-M, Choi G-S, Chung KH, Kang MJ (2015) Characterizations of electrodeposited uranium layer on stainless steel disc. Colloid Surf A Physicochem Eng Asp 487:121–130

    CAS  Google Scholar 

  67. Liew MJ, Roy S, Scott K (2003) Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at University of Newcastle upon Tyne. Green Chem 5:376–381

    CAS  Google Scholar 

  68. Allongue P, Maroun F (2006) Metal electrodeposition on single crystal metal surfaces mechanisms, structure and applications. Curr Opin Solid State Mater Sci 10:173–181

    CAS  Google Scholar 

  69. Bund A, Thiemig D (2007) Influence of bath composition and pH on the electrodeposition of alumina nanoparticles and copper. J Appl Electrochem 37:345–351

    CAS  Google Scholar 

  70. Ratsch C, Venables JA (2003) Nucleation theory and the early stages of thin film growth. J Vac Sci Technol, A 21:S96–S109

    CAS  Google Scholar 

  71. Kaiser N (2002) Review of the fundamentals of thin-film growth. Appl Opt 41:3053–3060

    CAS  Google Scholar 

  72. Venables JA, Spiller GDT, Hanbücken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399–459

    Google Scholar 

  73. Kumar R, Rao DD, Dubla R, Yadav JR (2017) A rapid method for estimation of Pu-isotopes in urine samples using high volume centrifuge. Appl Radiat Isot 125:176–179

    CAS  Google Scholar 

  74. Talvite NA (1972) Electrodeposition of actinides for alpha spectrometric determination. Anal Chem 44:280–283

    Google Scholar 

  75. Hallstadius L (1984) A method for the electrodeposition of actinides. Nucl Instrum Methods Phys Res 223:266–267

    CAS  Google Scholar 

  76. Novikov AP, Ryleeva VS, Abramova AV, Pribylova GA, Smirnov IV (2014) Electrodeposition of americium on the stainless steel support for the purpose of radiochemical assay. J Radioanal Nucl Chem 302:543–547

    CAS  Google Scholar 

  77. Tsoupko-Sitnikov V, Dayras F, De Sanoit J, Filossofov D (2000) Application of rotating disk electrode technique for the preparation of Np, Pu and Am α-sources. Appl Radiat Isot 52:357–364

    CAS  Google Scholar 

  78. Velichenko AB, Knysh VA, Luk’yanenko TV, Velichenko YA, Devilliers D (2012) Electrodeposition PbO2-TiO2 and PbO2-ZrO2 and its physicochemical properties. Mater Chem Phys 131:686–693

    CAS  Google Scholar 

  79. Wang K, Niu L, Zong Z, Zhang M, Wang C, Shi X, Men Y, Zou G (2008) Direct electrodeposition of copper ladder structures on a silicon substrate. Cryst Growth Des 8:442–445

    Google Scholar 

  80. Becerril VA, Meas VY, Tejera RA, Ozil P (1993) An improved rotating disc cathode cell for electrodeposition of actinides. The case of plutonium. Nucl Instrum Methods Phys Res A 328:512–516

    Google Scholar 

  81. Ferrero Calabuig JL, Martín Sánchez A, Roldán García C, Vera Tomé F, Da Silva MF, Soares JC, Juanes Barber D (1998) Semipermeable membrane to retain platinum atoms in the electrodeposition process of alpha spectrometry sources. Appl Radiat Isot 49:1269–1272

    Google Scholar 

  82. Vera Tomé F, Martín Sánchez A (1991) Optimizing the parameters affecting the yield and energy resolution in the electrodeposition deposition of uranium. Appl Radiat Isot 42:135–140

    Google Scholar 

  83. Vera Tomé F, Jurado Vargas M, Martín Sánchez A (1994) SIMPLEX method for optimization of experiments: application to electrodeposition in alpha spectrometry. Nucl Instrum Methods Phys Res A 348:183–187

    Google Scholar 

  84. Beesley AM, Crespo MT, Weiher N, Tsapatsaris N, Cózar JS, Esparza H, Méndez CG, Hill P, Schroeder SLM, Montero-Cabrera ME (2009) Evolution of chemical species during electrodeposition of uranium for alpha spectrometry by the Hallstadius method. Appl Radiat Isot 67:1559–1569

    CAS  Google Scholar 

  85. Shimojima H, Takagi J (1964) Electrodeposition of protactinium. J Inorg Nucl Chem 26:253–255

    CAS  Google Scholar 

  86. Dumitru OA, Begy RC, Nita DC, Bobos LD, Cosma C (2013) Uranium electrodeposition for alpha spectrometric source preparation. J Radioanal Nucl Chem 298:1335–1339

    CAS  Google Scholar 

  87. Saliba-Silva AM, De Oliverira ET, Durazzo M (2014) Uranium electrodeposition using direct potential technique in less acidic aqueous media. ECS Trans 61:1–8

    CAS  Google Scholar 

  88. Janda J, Sládek P, Sas D (2010) Electrodeposition of selected alpha-emitting radionuclides from oxalate-ammonium sulfate electrolyte and measured by means of solid-state alpha spectrometry. J Radioanal Nucl Chem 286:687–691

    CAS  Google Scholar 

  89. Payne RF, LaMont SP, Filby RH, Glover SE (2001) Optimization and characterization of a sulfate based electrodeposition method for alpha-spectrometry of neptunium and curium. J Radioanal Nucl Chem 248:449–452

    CAS  Google Scholar 

  90. Lee MH, Kim CJ, Boo BH (2000) Electrodeposition of alpha-emitting nuclides from ammonium oxalate-ammonium sulfate electrolyte. Bull Korean Chem Soc 21:175–179

    CAS  Google Scholar 

  91. Oh JS, Warwick PE, Croudace IW, Lee S-H (2014) Evaluation of three electrodeposition procedures for uranium, plutonium and americium. Appl Radiat Isot 87:233–237

    CAS  Google Scholar 

  92. Kressln IK (1977) Electrodeposition of plutonium and americium for high resolution α spectrometry. Anal Chem 49:842–846

    Google Scholar 

  93. Lee MH, Lee CW (2000) Preparation of alpha-emitting nuclides by electrodeposition. Nucl Instrum Methods Phys Res A 447:593–600

    CAS  Google Scholar 

  94. Mitchell RF (1960) Electrodeposition of actinide elements at tracer concentrations. Anal Chem 32:326–328

    CAS  Google Scholar 

  95. Lee MH, Pimpl M (1999) Development of a new electrodeposition method for Pu-determination in environmental samples. Appl Radiat Isot 50:851–857

    CAS  Google Scholar 

  96. Bajo S, Eikenberg J (1999) Electrodeposition of actinides for alpha-spectrometry. J Radioanal Nucl Chem 242:745–751

    CAS  Google Scholar 

  97. Mirashi NN, Aggarwal SK (2009) Studies for simultaneous quantitative electrodeposition of plutonium and americium for alpha-spectrometry. J Radioanal Nucl Chem 279:777–781

    CAS  Google Scholar 

  98. Salar H, Barker J (2006) Electrodeposition and determination of nano-scale uranium and plutonium using alpha-spectroscopy. J Radioanal Nucl Chem 268:497–501

    Google Scholar 

  99. Zantuti F, Al-Medehem B, Silin VI, Peretrukhin VF (1991) Electrodeposition of actinide traces from aqueous alkaline solutions and tributyl phosphate. J Radioanal Nucl Chem 147:51–58

    CAS  Google Scholar 

  100. Trdin M, Benedik L, Samardžija Z, Pihlar B (2012) Investigation of factors affecting the quality of americium electroplating. Appl Radiat Isot 70:2002–2005

    CAS  Google Scholar 

  101. Maya L, Gonzalez BD, Lance MJ, Holcomb DE (2004) Electrodeposition of uranium dioxide films. J Radioanal Nucl Chem 261:605–607

    CAS  Google Scholar 

  102. Jobbágy V, Crespo MT, Ammel RV, Marouli M, Moens A, Pommé S, García-Toraño E (2013) Preparation of high-resolution 238U α-sources by electrodeposition: a comprehensive study. J Radioanal Nucl Chem 298:345–352

    Google Scholar 

  103. Bond EM, Moody WA, Dry DE, Rabin MW (2013) Factors affecting the quality of plutonium deposits by electrodeposition. J Radioanal Nucl Chem 296:793–798

    CAS  Google Scholar 

  104. Henderson RA, Gostic JM, Burke JT, Fisher SE, Wu CY (2011) Electrodeposition of U and Pu on thin C and Ti substrates. Nucl Instrum Methods Phys Res A 655:66–71

    CAS  Google Scholar 

  105. Klemenčič H, Benedik L (2010) Alpha-spectrometric thin source preparation with emphasis on homogeneity. Appl Radiat Isot 68:1247–1251

    Google Scholar 

  106. Flores-Mendoza J, Iturbe JL, Jimenez-Reyes M (1992) Separation and electrodeposition of 226Ra. J Radioanal Nucl Chem 162:131–138

    CAS  Google Scholar 

  107. Roman D (1984) Electrodeposition of radium on stainless steel from aqueous solutions. Int J Appl Radiat Isot 35:990–992

    CAS  Google Scholar 

  108. Lee SC, Choi JG, Hodge VF (1994) Electrodeposition of selected alpha-emitting nuclides from ammonium acetate electrolyte. J Alloy Compd 213(214):465–466

    Google Scholar 

  109. Dos Santos LR, Sbampato ME, Dos Santos AM (2004) Characterization of electrodeposited uranium films. J Radioanal Nucl Chem 261:203–209

    Google Scholar 

  110. Martin P, Hancock GJ (2004) Peak resolution and tailing in alpha-particle spectrometry for environmental samples. Appl Radiat Isot 61:161–165

    CAS  Google Scholar 

  111. Méndez CG, Esparza-Ponce HE, Beesley AM, Crespo MT, Fuentes L, Fuentes-Montero L, Murillo G, Varela A, Montero-Cabrera ME (2010) Nanoscopic study of chemical species during uranium electrodeposition for alpha spectrometry sources. J Mater Sci 45:5061–5070

    Google Scholar 

  112. Burciaga-Valencia DC, Méndez CG, Esparza-Ponce H, Beesley AM, Crespo MT, Fluentes-Cobas L, Fuentes-Montero L, Montero-Cabrera ME (2011) Synchrotron radiation study of the uranium chemical species electrodeposited for alpha spectrometry sources. Rev Mex Fís S 57:21–29

    CAS  Google Scholar 

  113. Jobbágy V, Crespo MT, Van Ammel R, Marouli M, Moens A, Pommé S, Garcia-Toraño E (2011) Preparation of high-resolution 238U α-sources by electrodeposition from various electrolyte solutions. In: 2nd IMEKO TC 11 conference proceedings, pp 15–17

  114. Rodríguez PB, Tomé FV, Lozano JC (2001) Concentrating the low uranium yields in the electrodeposition process of soil and sediment analyses. Appl Radiat Isot 54:29–33

    Google Scholar 

  115. Moir DL (1994) Electrodeposition of actinides from saline groundwaters for alpha-spectrometric determination. J Radioanal Nucl Chem 180:201–208

    CAS  Google Scholar 

  116. Vargas MJ, De Soto FF (1995) Influence of Ba on the electrodeposition of 226Ra. J Radioanal Nucl Chem 198:143–150

    CAS  Google Scholar 

  117. Donnan MY, Dukes EK (1964) Carrier technique for quantitative electrodeposition of actinides. Anal Chem 36:392–394

    CAS  Google Scholar 

  118. Zarki R, Elyahyaoui A, Chiadli A (2001) Preparation of α-sources of U(VI) and Th(IV) by the electrodeposition technique in the presence of Ca2+ and some trivalent metals. Appl Radiat Isot 55:167–174

    CAS  Google Scholar 

  119. Kumar S, Diwan PK, Kumar S (2015) Energy loss straggling for α-particles in varying thicknesses of Al, Ti and Ni metallic foils. Radiat Phys Chem 106:21–25

    CAS  Google Scholar 

  120. Ibrahim DI, Al-Bedri MB (2012) Energy loss straggling of 5.486 MeV alpha particles in Melinex, Al, Ni and Cu. Appl Radiat Isot 70:617–619

    CAS  Google Scholar 

  121. Poon CY, Bhushan B (1995) Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear 190:76–88

    CAS  Google Scholar 

  122. Schmit J, Reed J, Novak E, Gimzewski JK (2008) Performance advances in interferometric optical profilers for imaging and testing. J Opt A: Pure Appl Opt 10:064001

    Google Scholar 

  123. Grant JT (1989) Methods for quantitative analysis in XPS and AES. Surf Interface Anal 14:271–283

    Google Scholar 

  124. Hajati S, Tougaard S (2010) XPS for non-destructive depth profiling and 3D imaging of surface nanostructures. Anal Bioanal Chem 396:2741–2755

    CAS  Google Scholar 

  125. Galindo RE, Gago R, Duday D, Palacio C (2010) Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES. Anal Bioanal Chem 396:2725–2740

    Google Scholar 

  126. Kuruc J, Strišovská J, Galanda D, Dulanská S, Mátel L, Jerigová M, Velič D (2012) Secondary ion mass spectrometry and alpha-spectrometry of electrodeposited thorium films. J Radioanal Nucl Chem 292:973–981

    CAS  Google Scholar 

  127. Ferrero Calabuig JL, Martín Sánchez A, Roldán García C, Roselló Ferrando J, Da Silva MF, Soares JC, Vera Tomé F (1996) Characterization of alpha sources by Rutherford backscattering spectrometry. Nucl Instrum Methods Phys Res A 369:603–607

    CAS  Google Scholar 

  128. Ferrero Calabuig JL, Vera Tomé F, Martín Sánchez A, Roldán García C, Da Silva MF, Soares JC, Ager FJ, Juanes Barber D, Rubio Montero P (1998) Ion beam analysis and alpha spectrometry of sources electrodeposited on several backings. Nucl Instrum Methods Phys Res B 136–138:290–296

    Google Scholar 

  129. Martín Sánchez A, Nuevo MJ, Jurado Vargas M, Díaz Bejarano Da Silva MF, Roldán García C, Paú A, Ferrero Calabuig JL, Méndez Vilas M, Juanes Barber D (2002) Application of atomic and nuclear techniques to the study of inhomogeneities in electrodeposited α-particle sources. Nucl Instrum Methods Phys Res B 190:747–750

    Google Scholar 

  130. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75:949–983

    CAS  Google Scholar 

  131. Martín Sánchez A, Nuevo Sánchez MJ, Rubio Montero MP, Méndez Vilas M (2002) Study of inhomogeneities in sources prepared for α-particle spectrometry using scanning probe microscopy. Appl Radiat Isot 56:31–36

    Google Scholar 

  132. Jalili N, Laxminarayana K (2004) A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14:907–945

    Google Scholar 

  133. Pouchou J-L, Boivin D, Beauchêne P, Le Besnerais G, Vignon F (2002) 3D reconstruction of rough surfaces by SEM stereo imaging. Mikrochim Acta 139:135–144

    CAS  Google Scholar 

  134. Marinello F, Bariani P, Savio E, Horsewell A, De Chiffre L (2008) Critical factors in SEM 3D stereo microscopy. Meas Sci Technol 19:065705

    Google Scholar 

  135. Stach S, Sapota W, Wróbel Z, Ţălu Ş (2016) Assessment of possibilities of ceramic biomaterial fracture surface reconstruction using laser confocal microscopy and long working distance objective lenses. Microsc Res Tech 79:385–392

    Google Scholar 

  136. Alford WJ, Vanderneut RD, Zaleckas VJ (1982) Laser scanning microscopy. Proc IEEE 70:641–651

    Google Scholar 

  137. Krug R, Würfel P, Ruppel W (1993) Material characterization with a simple laser scanning microscope. Appl Opt 32:6458–6463

    CAS  Google Scholar 

  138. Kuruc J, Harvan D, Galanda D, Mátel L, Jerigová M, Velič D (2011) Alpha spectrometry and secondary ion mass spectrometry of electrodeposited uranium films. J Radioanal Nucl Chem 289:611–615

    CAS  Google Scholar 

  139. Andanson J-M, Baiker A (2010) Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy. Chem Soc Rev 39:4571–4584

    CAS  Google Scholar 

  140. Bunaciu AA, Udriştioiu EG, Aboul-Enein HY (2015) X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem 45:289–299

    CAS  Google Scholar 

  141. Inn KGW, Hall E, Woodward JT IV, Stewart B, Pollanen R, Selvig L, Turner S, Outola I, Nour S, Kurosaki H, LaRosa J, Schultz M, Lin Z, Yu Z, McMahon C (2008) Use of thin collodion films to prevent recoil-ion contamination of alpha-spectrometry detectors. J Radioanal Nucl Chem 276:385–390

    CAS  Google Scholar 

  142. French JE, Blake DF (2016) Discovery of naturally etched fission tracks and alpha-recoil tracks in submarine glasses: reevaluation of a putative biosignature for earth and mars. Int J Geophys 2016:2410573

    Google Scholar 

  143. Sun H, Semkow TM (1998) Mobilization of thorium, radium and radon radionuclides in ground water by successive alpha-recoils. J Hydrol 205:126–136

    CAS  Google Scholar 

  144. Sill CW, Olson DG (1970) Sources and prevention of recoil contamination of solid-state alpha detectors. Anal Chem 42:1596–1607

    CAS  Google Scholar 

  145. Perreault LM, Yager EM, Aalto R (2013) Application of 210Pbex inventories to measure net hillslope erosion at burned sites. Earth Surf Process Landforms 38:133–145

    Google Scholar 

  146. Vainblat N, Pelled O, German U, Haquin G, Tshuva A, Alfassi ZB (2004) Determination of parameters relevant to alpha spectrometry when employing source coating. Appl Radiat Isot 61:307–311

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a 2020 Research Grant from Sangmyung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gun Ko.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, Y.G. Preparation and characterization of electrodeposited layers as alpha sources for alpha-particle spectrometry. J Radioanal Nucl Chem 326, 861–877 (2020). https://doi.org/10.1007/s10967-020-07398-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07398-w

Keywords

Navigation