Skip to main content
Log in

Adsorption of uranium(VI) with a novel AMPS-modified thermostable β-cyclodextrin biosorbent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, we synthesized a novel β-cyclodextrin/poly(2-acrylamide-2-methylpropionic acid)/attapulgite (CAMA) hydrogel for uranium(VI) adsorption. Various instrumental techniques such as FTIR, SEM, EDX, and TGA were utilized for characterization of the CAMA. Simultaneously, different important parameters, in specific pH, time, initial uranyl ion concentration and temperature were investigated to evaluate the optimal conditions of the adsorption process. The experiments proofs that the adsorption follows the pseudo-second-order kinetic model so as the Langmuir model, and revealed the maximum adsorption capacity of 434.78 mg g−1 at 298.15 K. Regeneration studies further sighted out the good reusability of the synthesized CAMA hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qin X (2020) A zinc metal-organic framework for concurrent adsorption and detection of uranium. Inorg Chem 59:9857–9865. https://doi.org/10.1021/acs.inorgchem.0c01072

    Article  CAS  Google Scholar 

  2. Yuvaraja G (2020) Impregnation of magnetic - momordica charantia leaf powder into chitosan for the removal of U(VI) from aqueous and polluted wastewater. Int J Biol Macromol 149:127–139. https://doi.org/10.1016/j.ijbiomac.2020.01.200

    Article  CAS  Google Scholar 

  3. Yan B (2020) An lon-crossiinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv Mater 32(1906615):1. https://doi.org/10.1002/adma.201906615

    Article  CAS  Google Scholar 

  4. Ang KL (2018) The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Miner Eng 123:8. https://doi.org/10.1016/j.mineng.2018.04.017

    Article  CAS  Google Scholar 

  5. Wang C (2021) Uranium in situ electrolytic deposition with a reusable functional graphene-foam electrode. Adv Mater. https://doi.org/10.1002/adma.202102633

    Article  Google Scholar 

  6. Fang L (2018) A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J Hazard Mater 342:617–624. https://doi.org/10.1016/j.jhazmat.2017.08.072

    Article  CAS  Google Scholar 

  7. Chen L (2019) Characterization, adsorption properties and mechanism of modified sophora japonica leaves to benzene. J Struct Chem 38:1474–1484. https://doi.org/10.14102/j.cnki.0254-5861.2011-2434

    Article  CAS  Google Scholar 

  8. Tang C (2018) Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicol Environ Saf 165:299–306. https://doi.org/10.1016/j.ecoenv.2018.09.009

    Article  CAS  Google Scholar 

  9. Mittal A (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interf Sci 343:463–473. https://doi.org/10.1016/j.jcis.2009.11.060

    Article  CAS  Google Scholar 

  10. Karthikeyan S (2012) A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J Mol Liq 173:153–163. https://doi.org/10.1016/j.molliq.2012.06.022

    Article  CAS  Google Scholar 

  11. Wang Q (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343. https://doi.org/10.1038/nature08693

    Article  CAS  Google Scholar 

  12. He C (2018) One-step synthesis of a β-cyclodextrin derivative and its performance for the removal of Pb(II) from aqueous solutions. Res Chem Intermed 44:2983–2998. https://doi.org/10.1007/s11164-018-3289-0

    Article  CAS  Google Scholar 

  13. Yuan J (2017) Synthesis and characterization of β-cyclodextrin-carboxymethyl cellulose-graphene oxide composite materials and its application for removal of basic fuchsin. J Iran Chem Soc 14:1827–1837. https://doi.org/10.1007/s13738-017-1122-0

    Article  CAS  Google Scholar 

  14. Li N (2020) Bioinspired succinyl-β-cyclodextrin membranes for enhanced uranium extraction and reclamation. Environ. Sci.: Nano. 7:3124–3135. https://doi.org/10.1039/d0en00709a

    Article  CAS  Google Scholar 

  15. Helal AS (2018) Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: succinyl-β-cyclodextrinAPTES@maghemite nanoparticles. Environ Sci: Nano 5:158–168. https://doi.org/10.1039/c7en00902j

    Article  CAS  Google Scholar 

  16. He J (2012) Oil-absorbent beads containing β-cyclodextrin moieties: preparation via suspension polymerization and high oil absorbency. Polym Adv Technol 23:810–816. https://doi.org/10.1002/pat.1975

    Article  CAS  Google Scholar 

  17. Atta A (2011) Acrylonitrile/acrylamidoxime/2-acrylamido-2-methylpropane sulfonic acid-based hydrogels: synthesis, characterization and their application in the removal of heavy metals. J Appl Polym Sci 122:999–1011. https://doi.org/10.1002/app.34245

    Article  CAS  Google Scholar 

  18. Atta A (2001) Synthesis and characterization of polyelectrolyte hydrogels with controlled swelling behaviour. Polym Int 50:1360–1369. https://doi.org/10.1002/pi.790

    Article  CAS  Google Scholar 

  19. Chen H (2009) Adsorption study for removal of Congo red anionic dye using organo attapulgite. J Adsorp 15:381–389. https://doi.org/10.1007/s10450-009-9155-z

    Article  CAS  Google Scholar 

  20. Wei M, Liao J, Liu N, Zhang D, Kang H, Yang Y, Yang Y, Jin J (2007) Interaction between uranium and humic acid (I): adsorption behaviors of U(VI) in soil humic acids. Nucl Sci Tech 18:287–293

    Article  CAS  Google Scholar 

  21. Wang C (2019) Incorporating attapulgite nanorods into graphene oxide nanofiltration membranes for efficient dyes wastewater treatment. Sep Purif Technol 214:21–30. https://doi.org/10.1016/j.seppur.2018.04.079

    Article  CAS  Google Scholar 

  22. Rosa F (2002) Hydrosoluble copolymers of acrylamide-(2-acrylamido-2-methylpropanesulfonic acid). Synthesis and characterization by spectroscopy and viscometry. J Appl Poly Sci 87:192–198. https://doi.org/10.1002/app.11325

    Article  CAS  Google Scholar 

  23. Acikyildiz M (2015) A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods. J Appl Surf Sci 354:279–284. https://doi.org/10.1016/j.apsusc.2015.07.021

    Article  CAS  Google Scholar 

  24. Jing P (2016) Kinetics and thermodynamics of adsorption of benzil-bridged β-cyclodextrin on uranium(VI). J Acta Phys Chim Sin 32:1933–1940. https://doi.org/10.3866/PKU.WHXB201604212

    Article  CAS  Google Scholar 

  25. Awual MR (2014) Ultra-trace copper(II) detection and removal from wastewater using novel meso-adsorbent. J Ind Eng Chem 20:2332–2340. https://doi.org/10.1016/j.jiec.2013.10.009

    Article  CAS  Google Scholar 

  26. Dai Y (2020) Macroporous ion-imprinted chitosan foams for the selective biosorption of U(VI) from aqueous solution. Int J Biol Macromol 164:4155–4164. https://doi.org/10.1016/j.ijbiomac.2020.08.238

    Article  CAS  Google Scholar 

  27. Monier M (2016) Ion-imprinted modified chitosan resin for selective removal of Pd(II) ions. J Colloid Interf Sci 469:344–354. https://doi.org/10.1016/j.jcis.2016.01.074

    Article  CAS  Google Scholar 

  28. Gu Z (2014) Preparation of carbon aerogels and adsorption of uranium(VI) from aqueous solution. Acta Phys Chim Sin 31:95–100. https://doi.org/10.3866/PKU.WHXB2014Ac13

    Article  CAS  Google Scholar 

  29. Wei C (2017) Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties. Ecotoxicol Environ Saf 142:40–50. https://doi.org/10.1016/j.ecoenv.2017.03.040

    Article  CAS  Google Scholar 

  30. Awual MR (2013) Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem Eng J 221:322–330. https://doi.org/10.1016/j.cej.2013.02.016

    Article  CAS  Google Scholar 

  31. Awual MR (2015) Preparation of new class composite adsorbent for enhanced palladium(II) detection and recovery. Sens Actuat B Chem 209:790–797. https://doi.org/10.1016/j.snb.2014.12.053

    Article  CAS  Google Scholar 

  32. Guangming Z (2015) Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chem Eng J 259:153–160. https://doi.org/10.1016/j.cej.2014.07.115

    Article  CAS  Google Scholar 

  33. Peng Q (2010) Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J Hazard Mater 177:676–682. https://doi.org/10.1016/j.jhazmat.2009.12.084

    Article  CAS  Google Scholar 

  34. Zhou L (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion imprinted magnetic chitosan resins. J Coll Interf Sci 366:165–172. https://doi.org/10.1016/j.jcis.2011.09.069

    Article  CAS  Google Scholar 

  35. Ting T (2021) Facile synthesis of an environment-friendly cyclodextrin-based polycarboxylic acid polymer for efcient removal of U(VI) and Eu(III). J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-07885-8

    Article  Google Scholar 

  36. Li W (2019) Green synthesis of citric acid-crosslinked β-cyclodextrin for highly efcient removal of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 322:2033–2042. https://doi.org/10.1007/s10967-019-06901-2

    Article  CAS  Google Scholar 

  37. Jing P (2016) Kinetics and thermodynamics of adsorption of benzil-bridged β-cyclodextrin on uranium(VI). Acta Phys Chim Sin 32:1933–1940. https://doi.org/10.3866/PKU.WHXB201604212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fuzhou University Talent Fund Project (XRC-1608) and Technology Development Fund of Fuzhou University (XRC-1412)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, M., Li, W., Zhang, Z. et al. Adsorption of uranium(VI) with a novel AMPS-modified thermostable β-cyclodextrin biosorbent. J Radioanal Nucl Chem 332, 23–32 (2023). https://doi.org/10.1007/s10967-022-08596-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08596-4

Keywords

Navigation