Skip to main content
Log in

Injection and sampling of 133Xe in shallow boreholes in alluvium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We present an overview of a small-scale tracer migration experiment that was carried out in July 2018 at the Nevada National Security Site. This experiment involved the injection of 133Xe into the bottom of a shallow borehole with multiple sampling intervals. Sampling was then conducted in the injection borehole and in a second borehole located 17 m from the injection site. A simple system for measurement of the 133Xe activity in whole air was utilized onsite. Though many samples were well below MDC, cross-hole tracer transport was observed. Along with experimental results, additional insights gained from numerical modeling are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified from Huckins-Gang and Drellack [16])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bowyer TW, Schlosser C, Abel KH, Auer M, Hayes JC, Heimbigner TR, McIntyre JI, Panisko ME, Reeder PL, Satorius H, Schulze J, Weiss W (2002) Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system. J Environ Radioact 59:139–151. https://doi.org/10.1016/S0265-931X(01)00042-X

    Article  CAS  Google Scholar 

  2. Saey PRJ (2007) Ultra-low-level measurements of argon, krypton and radio xenon for treaty verification purposes. ESARDA Bull 36:42–56

    Google Scholar 

  3. Carman AJ, McIntyre JI, Bowyer TW, Hayes JC, Heimbigner TR, Panisko ME (2003) Discrimination between anthropogenic sources of atmospheric radioxenon. Trans Am Nucl Soc 87:89–90 (87:Medium: X)

    Google Scholar 

  4. Chadwick MB, Herman M, Obloˇ P, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown DA, Capote R, Carlson AD, Cho YS, Derrien H, Guber K, Hale GM, Hoblit S, Holloway S, Johnson TD, Kawano T, Kiedrowski BC, Kim H, Kunieda S, Larson NM, Leal L, Lestone JP, Little RC, McCutchan EA, Macfarlane RE, Macinnes M, Mattoon CM, McKnight RD, Mughabghab SF, Nobre GPA, Palmiotti G, Palumbo A, Pigni MT, Pronyaev VG, Vogt RL, Marck SCVD, Wallner A, White MC, Wiarda D, Young PG (2011) ENDF/B-VII 1. Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Astrophys J 112:2887–2996. https://doi.org/10.1016/j.nds.2011.11.002

    Article  CAS  Google Scholar 

  5. England TR, Rider BF (1994) Evaluation and compilation of fission product yields 1993. ENDF 349:1–173

    Google Scholar 

  6. Feldman J, Paul M, Xu G, Rademacher DX, Wilson J, Nenoff TM (2020) Effects of natural zeolites on field-scale geologic noble gas transport. J Environ Radioact 220–221:106279–106279. https://doi.org/10.1016/j.jenvrad.2020.106279

    Article  CAS  Google Scholar 

  7. Paul MJ, Biegalski SR, Haas DA, Jiang H, Daigle H, Lowrey JD (2018) Xenon adsorption on geological media and implications for radionuclide signatures. J Environ Radioact 187:65–72. https://doi.org/10.1016/j.jenvrad.2018.01.029

    Article  CAS  Google Scholar 

  8. Lowrey JD, Biegalski SR, Deinert MR (2012) UTEX modeling of radioxenon isotopic fractionation resulting from subsurface transport. J Radioanal Nucl Chem 296:129–134. https://doi.org/10.1007/s10967-012-2026-1

    Article  CAS  Google Scholar 

  9. Johnson C, Lowrey JD, Rockhold ML, Waichler SR (2018) The impact of geologic parameters and water infiltration on the imprinting of 133Xe. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6069-9

    Article  Google Scholar 

  10. Carrigan CR, Heinle RA, Hudson GB, Nitao JJ, Zucca JJ (1996) Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature 382:528–531

    Article  CAS  Google Scholar 

  11. Lowrey J, Biegalski S, Osborne A, Deinert M (2013) Subsurface mass transport affects the radioxenon signatures that are used to identify clandestine nuclear tests. Geophys Res Lett 40:111–115

    Article  CAS  Google Scholar 

  12. Olsen KB, Kirkham RR, Woods VT, Haas DH, Hayes JC, Bowyer TW, Mendoza DP, Lowrey JD, Lukins CD, Suarez RD, Humble PH, Ellefson MD, Ripplinger MD, Zhong L, Mitroshkov AV, Aalseth CE, Prinke AM, Mace EK, McIntyre JI, Stewart TL, Mackley RD, Milbrath BD, Emer DF, Biegalski SR (2016) Noble gas migration experiment to support the detection of underground nuclear explosions. J Radioanal Nucl Chem 307:2603–2610. https://doi.org/10.1007/s10967-015-4639-7

    Article  CAS  Google Scholar 

  13. Johnson C, Fast J, Milbrath B, Lowrey J, Fritz B, Alexander T, Mayer M, Suarez R, Ripplinger M, Hayes J, Woods V, Zhong L, Prinke A, McIntyre J, Kirkham R, Olsen K (2020) UNESE Phase 2: injection and measurement of gaseous tracers at U-12p tunnel

  14. Johnson C, Aalseth CE, Alexander TR, Bowyer TW, Chipman V, Day AR, Drellack S, Fast JE, Fritz BG, Hayes JC, Huckins-Gang HE, Humble P, Kirkham RR, Lowrey JD, Mace EK, Mayer MF, McIntyre JI, Milbrath BD, Panisko ME, Paul MJ, Obi CM, Okagawa RK, Olsen KB, Ripplinger MD, Seifert A, Suarez R, Thomle J, Townsend MJ, Woods VT, Zhong L (2019) Migration of noble gas tracers at the site of an underground nuclear explosion at the Nevada National Security Site. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2019.106047

    Article  Google Scholar 

  15. McIntyre JI, Aalseth CE, Alexander TR, Back HO, Bellgraph BJ, Bowyer TW, Chipman V, Cooper MW, Day AR, Drellack S, Foxe MP, Fritz BG, Hayes JC, Humble P, Keillor ME, Kirkham RR, Krogstad EJ, Lowrey JD, Mace EK, Mayer MF, Milbrath BD, Misner A, Morley SM, Panisko ME, Olsen KB, Ripplinger MD, Seifert A, Suarez R (2017) Measurements of Argon-39 at the U20az underground nuclear explosion site. J Environ Radioact 178–179:28–35. https://doi.org/10.1016/j.jenvrad.2017.07.013

    Article  CAS  Google Scholar 

  16. Huckins-Gang HE, Drellack SL (2016) Drilling, completion, and geology of argon holes U-2ez-Ar-1 and U-2ez-Ar-2. National Security Technologies unpublished report. November 02, 2016

  17. Sweetkind DS, Drake I, Ronald M (2007) Geologic characterization of young alluvial basin-fill deposits from drill hole data in Yucca Flat, Nye County, Nevada. United States Geological Survey-Nevada, Henderson, Nevada

  18. Johnson C, Milbrath B, Lowrey J, Alexander T, Fast J, Fritz B, Kirkham R, Mace E, Mayer M, McIntyre J, Olsen K (2021) Measurements of Argon-39 from locations near historic underground nuclear explosions. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2021.106715

    Article  Google Scholar 

  19. Idc (2004) Formats and protocols for messages (IMS2.0)

  20. White MD, Oostrom M 2000 STOMP subsurface transport over multiple phases Version 2.0 Theory Guide. United States. https://doi.org/10.2172/972507

  21. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, de Mora P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

  22. Cooper MW, Hayes JC, Schrom BT, McIntyre JI, Ely JH (2016) Minimum Detectable concentration and concentration calculations. https://doi.org/10.2172/1526738

  23. Khazov Y, Rodionov A, Kondev FG (2011) Nuclear data sheets for A = 133. Nucl Data Sheets 112:855–1113. https://doi.org/10.1016/j.nds.2011.03.001

    Article  CAS  Google Scholar 

  24. Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40:586–593. https://doi.org/10.1021/ac60259a007

    Article  CAS  Google Scholar 

  25. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  26. Rockhold ML, Fayer MJ, Heller PR (1993) Physical and hydraulic properties of sediments and engineered materials associated with grouted double-shell tank waste disposal at Hanford. United States. https://doi.org/10.2172/10102958

  27. Schroth MH, Istok JD, Ahearn SJ, Selker JS (1996) Characterization of Miller-Similar silica sands for laboratory hydrologic studies. Soil Sci Soc Am J 60(5):1331–1339. https://doi.org/10.2136/sssaj1996.03615995006000050007x

  28. Hennessy JT, Gibbens RP, Tromble JM, Cardenas M (1983) Water Properties of Caliche. J Range Manag 36(6):723–726

  29. NV ASOS Network Iowa State University College of Agriculture (2019). https://mesonet.agron.iastate.edu/request/download.phtml?network=NV_ASOS. Accessed 2019

  30. Lowrey JD, Biegalski SR, Bowyer TW, Haas DA, Hayes JC (2015) Consideration of impact of atmospheric intrusion in subsurface sampling for investigation of suspected underground nuclear explosions. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-015-4462-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D), and the Underground Nuclear Explosion Signatures Experiment, a multi-year research and development project sponsored by NNSA DNN R&D and collaboratively executed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mission Support and Test Services, Pacific Northwest National Laboratory, and Sandia National Laboratories. The authors also wish to thank Heather Huckins-Gang, Maggie Townsend, Veraun Chipman, and others from MSTS for their assistance in making the experiment a success.

This work was performed by Pacific Northwest National Laboratory under award number DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Lowrey.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SI: Methods and Applications of Radioanalytical Chemistry (MARC XII). MARC XII Assigned Log Number: 493.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, C.M., Luo, X., Mayer, M.F. et al. Injection and sampling of 133Xe in shallow boreholes in alluvium. J Radioanal Nucl Chem 331, 5173–5183 (2022). https://doi.org/10.1007/s10967-022-08584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08584-8

Keywords

Navigation