Skip to main content
Log in

Kinetics of dissolution of simulated (U–Ce) MOX fuel pellet in nitric acid

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present study, the dissolution kinetics of simulated urania, ceria MOX fuel pellets in nitric acid under PUREX process condition has been investigated. Influence of various parameters like initial concentration of nitric acid, temperature and Ce composition on rate of dissolution of MOX fuel pellet was studied. Rate expression was developed by considering Langmuir–Hinshelwood mechanism to describe the dissolution of MOX fuel pellet in nitric acid. The estimated value of activation energy of about 40–50 kJ mol−1 confirms the intrinsic nature of dissolution kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HNO3 :

Nitric acid

UO2 :

Uranium dioxide

CeO2 :

Cerium oxide

MOX:

Mixed oxide

U:

Uranium

Pu:

Plutonium

Ce:

Cerium

v B :

Stoichiometric coefficient of UO2

v AB :

Stoichiometric coefficient of HNO3 for UO2 dissolution

v E :

Stoichiometric coefficient of CeO2

v AE :

Stoichiometric coefficient of HNO3 for CeO2 dissolution

C:

Cocentration, kmol m3

kLA :

Mass transfer coefficient between the reaction surface and the bulk liquid phase, m/s

nA :

Number of mols of nitric acid in reaction mixture

nBL :

Number of mols of uranium in reaction mixture

nEL :

Number of mols of cerium in reaction mixture

kB :

Rate constant for UO2 dissolution, kmol m5 s1

kE :

Rate constant for CeO2 dissolution, kmol m5 s1

rsB :

Rate of surface reaction for UO2 dissolution, kmol m5 s1

rsE :

Rate of surface reaction for CeO2 dissolution, kmol m5 s1

AtB :

Reactive surface area for UO2 dissolution at any time, m2

AtE :

Reactive surface area for CeO2 dissolution at any time, m2

θ AU :

The surface coverage of HNO3 on solid phase by adsorption for UO2 dissolution (fractional coverage)

θ AE :

The surface coverage of HNO3 on solid phase by adsorption for CeO2 dissolution (fractional coverage)

T:

Temperature, K

θ A :

Surface coverage of HNO3 on solid phase by adsorption

Kad :

Adsorption constant, m3 kmol1

a:

Shape factor

Ap :

Reactive surface area of particle, m2

Vp :

Volume of particle, m3

R:

Radius of particle, m

n:

Amount of unreacted solid at any time, t

n0 :

Amount of solid material at time, t = 0

M:

Molecular wt of MOX pellet, gmmol1

mP :

Mass of solid particle, kg

x0B :

Mole fraction of UO2

n0B :

Amount of UO2 in solid partcile at time, t = 0

nB :

Unreacted amount of UO2 in solid particle at any time, t

x0E :

Mole fraction of CeO2

n0E :

Amount of CeO2 in solid particle at time, t = 0

nE :

Unreacted amount of CeO2 in solid particle at any time, t

VL :

Volume of the reaction mixture, m3

L:

Liquid phase/Reaction mixture

B:

UO2/Uranium

A:

Nitric acid

E:

CeO2/Cerium

S:

Concentration at solid surface

b:

Bulk liquid phase

t:

Time

0/t = 0:

Initial condition, at t = 0

f:

Final condition

p:

Solid particle

Calc:

Calculated

Exp:

Experimental

ρp :

Density of solid particle, kg m3

σ:

Specific surface area of solid particle, m2 kg1

References

  1. Murray RL, Holber KE (2015) Nuclear energy: an introduction to the concepts, systems and applications of nuclear processes, 7th edn. Elsevier

    Google Scholar 

  2. Department of Atomic Energy Annual Report., 2019–2020 https://dae.gov.in/writereaddata/Annual2019-2020e.pdf

  3. Judd AM (1981) Fast breeder reactors: an engineering introduction. Pergamon Press, Oxford

    Google Scholar 

  4. Ryan JL. Bray LA (1980) Dissolution of plutonium dioxide—a critical review. In: Navratil JD, Schultz WW (eds) Actinide separations, p. 499. ACS Symposium Series, 17th ACS National Meeting, Honolulu, HI

  5. Desigan N, Ganesh S, Pandey NK (2021) Dissolution behavior of Fast Reactor MOX nuclear fuel pellets in nitric acid medium. J Nucl Mat. https://doi.org/10.1016/j.jnucmat.2021.153077

    Article  Google Scholar 

  6. Kim HS, Joung CY, Lee BH, Oh JY, Koo YH, Heimgartner P (2008) Applicability of CeO2 as a surrogate for PuO2 in a MOX fuel development. J Nucl Mat 378:98–104

    Article  CAS  Google Scholar 

  7. Marra JC, Cozzi AD, Pierce RA, Pareizs JM, Jurgensen AR, Missimer DM (2001) Cerium as a Surrogate in the Plutonium Immobilized Form. WSRC-MS-2001–00007; Westinghouse Savannah River Company, Aiken, SC 29808. https://sti.srs.gov/fulltext/ms2001007/ms2001007.html

  8. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York

    Google Scholar 

  9. Salmi T, Grenman H, Warna J, Murzin DYu (2013) New modeling approach to liquid–solid reaction kinetics: from ideal particle to real particle. Chem Eng Res Des 91:1876

    Article  CAS  Google Scholar 

  10. BlainHT (1960) Rep. Congr. Atom. Energy Commn. U.S. HW-66320

  11. Fukasawa T, Ozawa Y (1986) Relationship between dissolution rate of uranium dioxide pellets in nitric acid solutions and their porosity. J Radioanal Nucl Chem Lett 106(6):345

    Article  CAS  Google Scholar 

  12. Fukasawa T, Ozawa Y, Kawamura F (1991) Generation and decomposition behaviour of nitrous acid during dissolution of UO2 pellets by nitric acid. Nucl Technol 94:108

    Article  Google Scholar 

  13. Hodgson TD (1987) Proceedings of international conference on nuclear fuel reprocessing and waste management. RECOD 87, France, 591

  14. Homma S, Koga J, Matsumoto S (1993) Dissolution rate equation of UO2 pellet. J Nucl Sci Technol 30:959

    Article  Google Scholar 

  15. Ikeda Y, Yasuike Y, Nishimura K, Hasegawa S, Takashima Y (1995) Kinetic study on dissolution of UO2 powders in nitric acid. J Nucl Mater 224:266

    Article  CAS  Google Scholar 

  16. Ikeda Y, Yasuike Y, Takashima Y, Park YY, Asano Y, Tomiyasu H (1993) 17O NMR study on dissolution reaction of UO2 in nitric acid mechanism of electron transfer. J Nucl Sci Technol 30(9):962

    Article  CAS  Google Scholar 

  17. Inoue A, Sujino T (1984) Dissolution rates of U3O8 Powders in nitric acid. Ind Eng Chem Process Des Dev 23:122

    Article  CAS  Google Scholar 

  18. Inoue A (1986) Mechanism of the oxidative dissolution of UO2 in HNO3 solution. J Nucl Mater 138:152

    Article  CAS  Google Scholar 

  19. Mineo H, Isogai H, Morita Y, Uchiyama G (2004) An investigation into dissolution rate of spent nuclear fuel in aqueous reprocessing. J Nucl Sci Technol 41(2):126

    Article  CAS  Google Scholar 

  20. Shabbir M, Robins RG (1968) Kinetics of the dissolution of uranium dioxide in nitric acid I. J Appl Chem 18:129

    Article  CAS  Google Scholar 

  21. Taylor RF, Sharratt EW, Chazal LE, Logsdail DH (1963) Dissolution rate of uranium dioxide sintered pellets in nitric acid systems. J Appl Chem 13:32

    Article  CAS  Google Scholar 

  22. Desigan N, Elizabeth A, Remya M, Pandey NK, Kamachi Mudali U, Natarajan R, Joshi JB (2015) Dissolution kinetics of Indian PHWR natural UO2 fuel pellets in nitric acid: effect of initial acidity and temperature. Prog Nucl Energy 83:52

    Article  CAS  Google Scholar 

  23. Elizabeth A, Desigan N, Pandey NK, Joshi JB (2020) Analysis of kinetic data for the dissolution of UO2 fuel pellets in nitric acid. J Rad Anal Nucl Chem 324:211–218

    Article  Google Scholar 

  24. Barney GS (1977) The kinetics of plutonium oxide dissolution in nitric/hydrofluoric acid mixtures. J Inorg Nucl Chem 39:1665

    Article  CAS  Google Scholar 

  25. Harmon HD (1975) Evaluation of fluoride, cerium (IV), and cerium (IV)-fluoride mixtures as dissolution promoters for PuO2 scarp recovery processes. Report DP-1383

  26. Horner D, Crouse DJ, Mailen JC (19770) Cerium-promoted dissolution of PuO2 and PuO2– UO2 in nitric acid. ORNL/TM-4716

  27. Kazanjian AR, Stevens JR (1984) Dissolution of plutonium oxide in nitric acid at high hydrofluoric acid concentrations. Report RFP-3609

  28. Ryan JL, Bray L, Wheelwright EJ, Bryan GH (1990) Catalyzed electrolytic plutonium oxide dissolution (CEPOD): the past seventeen years and future potential. PNL-SA-18018, CONF-900846–5, 39

  29. Uriarte AL, Rainey RH (1965) Dissolution of high-density UO2, PuO2, and UO2-PuO2 pellets in inorganic acids. Oak Ridge National laboratory report ORNL-3695

  30. Zawodzinski C, Smith WH, Martinez KR (1993) Kinetic studies of the electrochemical generation of Ag(ll) ion and the catalytic oxidization of selected organics. In: Proceedings of the symposium on environmental aspects of electrochemistry and photoelectrochemistry, Honolulu, HI (United States)

  31. Bourges J, Madic C, Koehly G, Leconte M (1986) Dissolution of plutonium bioxide in nitric medium with electrogenerated silver (II). J Less Comm Met 122:303–311

    Article  CAS  Google Scholar 

  32. Cooley CR (1971) Status of electrolytic dissolution for LMFBR fuels. Report number HEDLTME--71–123. https://doi.org/10.2172/4732897.

  33. Ryan JL, Bray LA, Boldt AL (1987) Dissolution of PuO2 or NpO2 using electrolytically regenerated reagents. US Patent 4686019

  34. Desigan N, Bhatt N, Shetty MA, Sreekumar GKP, Pandey NK, Mudali UK, Natarajan R, Joshi JB (2019) Dissolution of nuclear materials in aqueous acid solutions. Rev Chem Eng 35(6):707–734. https://doi.org/10.1515/revce-2017-0063

    Article  CAS  Google Scholar 

  35. Kolman DG, Park YS, Tan M, Hanrahan RJ Jr, Butt DP (1999) An assessment of the validity of cerium oxide as a surrogate for plutonium oxide gallium removal studies. LANL Report LA-UR-99-0491

  36. Lee YW, Kim HS, Kim SH, Joung CY, Na SH, Ledergerber G, Heimgartner P, Pouchon M, Burghartz M (1999) Preparation of simulated inert matrix fuel with different powders by dry milling method. J Nucl Mater 274:7

    Article  CAS  Google Scholar 

  37. Markin TL, Street RS, Crouch EC (1970) Thermodynamic data for U–Ce-oxides. J Inorg Nucl Chem 32:59. Lorenzelli R, Touzelin B (1980). J Nucl Mater 95:290.

  38. Desigan N, Maji D, Ananthasivan K, Pandey NK, Kamachi Mudali U, Joshi JB (2019) Dissolution behavior of simulated MOX nuclear fuel pellets in nitric acid. Prog Nucl Energy 116:1–9

    Article  CAS  Google Scholar 

  39. Carberry JJ (1976) Chemical and catalytic reaction engineering. Mc Graw-Hill, New York

    Google Scholar 

  40. Maji D, Ananthasivan K, Venkata Krishnan R, Balakrishnan S, Joseph K, Das Gupta A (2018) Nanocrystalline (U0.5 Ce0.5)O2±x solid solutions through citrate gel-combustion. J Nucl Mat 502:370–379

    Article  CAS  Google Scholar 

  41. Doraiswamy LK, Sharma MM (1984) Heterogeneous reactions: analysis, examples, and reactor design. Wiley, New York

    Google Scholar 

  42. Rigby SP, Fletcher RS, Riley SN (2004) Characterization of porous solids using integrated nitrogen sorption and mercury porosimetry. Chem Eng Sci 59(1):41–51. https://doi.org/10.1016/j.ces.2003.09.017

    Article  CAS  Google Scholar 

  43. Grenman H, Salmi T, Murzin DY (2011) Solid liquid reaction kinetics-experimental aspects and model development. Rev Chem Eng 27 (2011):53–77

  44. Salmi T, Grenman H, Warna J, Murzin DYu (2011) Revisiting shrinking particle and product layer models for fluid–solid reactions: from ideal surfaces to real surfaces. Chem Eng Process 50:1076

    Article  CAS  Google Scholar 

  45. Desigan N, Bhatt NP, Pandey NK, Kamachi Mudali U, Natarajan R, Joshi JB (2017) Mechanism of dissolution of nuclear fuel in nitric acid relevant to nuclear fuel reprocessing. J Radioanal Nucl Chem 312(1):141

    Article  CAS  Google Scholar 

  46. Davidson JK, Haas WO Jr, Meroherter JL, Miller RS, Smith DJ (1959) The fast oxide breeder: the fuel cycle. KAPL-1757

  47. Ferris LM, Kibbey AH (1960) Sulfex-thorex and darex-thorex processes for the dissolution of consolidated edison power reactor fuel: laboratory development. ORNL-2934

  48. Flagg JF (1960) Chemical processing of reactor fuels. Academic Press, New York, p 90

    Google Scholar 

  49. Desigan N, Pandey NK, Joshi JB (2021) Influence of the concentration of nitric acid on the composition of NOX gas evolved during the dissolution of nuclear fuel and its implications on the PUREX process. Prog Nucl Energy 135:103704. https://doi.org/10.1016/j.pnucene.2021.103704

    Article  CAS  Google Scholar 

  50. Grenman H, Ingves M, Warna J, Corander J, Murzin DYu, Salmi T (2011) Common potholes in modelling solid-liquid reactions-methods for avoiding them. Chem Eng Sci 66:4459

    Article  CAS  Google Scholar 

  51. Desigan N (2017a) Chemical aspects of the dissolution of fast reactor nuclear fuel. Ph.D. Thesis, HBNI, Mumbai. https://sg.inflibnet.ac.in/handle/10603/274476

  52. Butcher JC (2016) Numerical methods for ordinary differential equations, 3rd edn. Wiley, New York

    Book  Google Scholar 

  53. Ikeuchi H, Shibata A, Sano Y, Koizumi T (2012) Dissolution behaviour of irradiated mixed oxide fuels with different plutonium contents. Proc Chem 7:77–83

    Article  CAS  Google Scholar 

  54. Kizim NF (1992) The dynamic separation of substances by liquid–liquid extraction. Russ Chem Rev 61:830–850

    Article  Google Scholar 

  55. Yu JF, Ji C (1992) Interfacial chemistry and kinetics-controlled reaction mechanism of organophosphoric acid mixed extraction systems. Chem J Chin Univ 13:224–226

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Desigan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustine, E., Desigan, N., Rajeev, R. et al. Kinetics of dissolution of simulated (U–Ce) MOX fuel pellet in nitric acid. J Radioanal Nucl Chem 331, 4529–4539 (2022). https://doi.org/10.1007/s10967-022-08582-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08582-w

Keywords

Navigation