Skip to main content
Log in

Analysis of kinetic data for the dissolution of UO2 fuel pellets in nitric acid

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present study, the dissolution kinetics of UO2 pellets in nitric acid has been investigated. Kinetic rate expressions based on Langmuir–Hinshelwood mechanism have been developed to describe the kinetics of dissolution of UO2 pellet in nitric acid. Effects of concentration of nitric acid, temperature of the reaction mixture and mixing intensity on the rate of dissolution have also been studied. Analysis of experimental data revealed that the reaction to be in the chemical reaction controlled regime under the experimental conditions with an activation energy estimated to be about 80 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Department of Atomic Energy—Annual Report (2011–2012). http://dae.nic.in/writereaddata/ar2012_0.pdf

  2. Judd AM (1981) Fast breeder reactors: an engineering introduction. Pergamon Press, Oxford

    Google Scholar 

  3. Desigan N (2017) Chemical aspects of dissolution of fast reactor fuel in nitric acid. PhD thesis, HBNI. http://www.hbni.ac.in/students/dsp_ths.html?nm=chem/CHEM02201004016.pdf

  4. Desigan N, Bhatt Nirav P, Pandey NK, Kamachi Mudali U, Natarajan R, Joshi JB (2017) Mechanism of dissolution of nuclear fuel in nitric acid relevant to nuclear fuel reprocessing. J Radioanal Nucl Chem 312(1):141

    Article  CAS  Google Scholar 

  5. Salmi T, Grenman H, Warna J, Murzin DYu (2011) Revisiting shrinking particle and product layer models for fluid–solid reactions: from ideal surfaces to real surfaces. Chem Eng Process 50:1076

    Article  CAS  Google Scholar 

  6. Taylor RF, Sharratt EW, Chazal LE, Logsdail DH (1963) Dissolution rate of uranium dioxide sintered pellets in nitric acid systems. J Appl Chem 13:32

    Article  CAS  Google Scholar 

  7. Shabbir M, Robins RG (1968) Kinetics of the dissolution of uranium dioxide in nitric acid I. J Appl Chem 18:129

    Article  CAS  Google Scholar 

  8. Shabbir M, Robins RG (1968) Kinetics of the dissolution of uranium dioxide in nitric acid 1. J Appl Chem 19:52

    Article  Google Scholar 

  9. Blain HT (1960) Report of Congress Atomic Energy Committee. US HW-66320

  10. Hodgson TD (1987) Proceedings of international conference on nuclear fuel reprocessing and waste management, Record 87, France, Paris, p 591

  11. Homma S, Koga J, Shiro Matsumoto S (1993) Dissolution rate equation of UO2 pellet. J Nucl Sci Technol 30:959

    Article  Google Scholar 

  12. Fukasawa T, Ozawa Y (1986) Relationship between dissolution rate of uranium dioxide pellets in nitric acid solutions and their porosity. J Radioanal Nucl Chem Lett 106(6):345

    Article  CAS  Google Scholar 

  13. Fukasawa T, Ozawa Y, Kawamura F (1991) Generation and decomposition behaviour of nitrous acid during dissolution of UO2 pellets by nitric acid. Nucl Technol 94:108

    Article  Google Scholar 

  14. Mineo H, Isogai H, Morita Y, Uchiyama G (2004) An investigation into dissolution rate of spent nuclear fuel in aqueous reprocessing. J Nucl Sci Technol 41(2):126

    Article  CAS  Google Scholar 

  15. Desigan N, Augustine Elizabeth, Murali Remya, Pandey NK, Kamachi Mudali U, Natarajan R, Joshi JB (2015) Dissolution kinetics of Indian PHWR natural UO2 fuel pellets in nitric acid: effect of initial acidity and temperature. Prog Nucl Energy 83:52

    Article  CAS  Google Scholar 

  16. Desigan N, Bhatt Nirav P, Shetty Madhuri A, Joshi Jyeshtharaj B (2019) Dissolution of nuclear materials in aqueous acid solutions: a review and proposals for future developments. Rev Chem Eng 35(6):707

    Article  CAS  Google Scholar 

  17. Ikeda Y, Yasuike Y, Nishimura K, Hasegawa S, Takashima Y (1995) Kinetic study on dissolution of UO2 powders in nitric acid. J Nucl Mater 224:266

    Article  CAS  Google Scholar 

  18. Ikeda Y, Yasuike Y, Takashima Y, Yul Park Y, Asano Y, Tomiyasu H (1993) 17O NMR study on dissolution reaction of UO2 in nitric acid mechanism of electron transfer. J Nucl Sci Technol 30(9):962

    Article  CAS  Google Scholar 

  19. Inoue A, Sujino T (1984) Dissolution rates of U3O8 powders in nitric acid. Ind Eng Chem Process Des Dev 23:122

    Article  CAS  Google Scholar 

  20. Inoue A (1986) Mechanism of the oxidative dissolution of UO2 in HNO3 solution. J Nucl Mater 138:152

    Article  CAS  Google Scholar 

  21. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiely, New York

    Google Scholar 

  22. Salmi T, Grenman H, Warna J, Yu Murzin D (2013) New modeling approach to liquid–solid reaction kinetics: from ideal particle to real particle. Chem Eng Res Des 91:1876

    Article  CAS  Google Scholar 

  23. Florence TM, Farrar Yvonne (1963) Spectrophotometric determination of Uranium with 4-(2-Pyridylazo) resorcinol. Anal Chem 35(11):1613

    Article  CAS  Google Scholar 

  24. Srinivasan TG, Vasudeva Rao PR (2014) Free acidity measurement: a review. Talanta 119:162

    Article  Google Scholar 

  25. Stephen B, Emmett PH, Edward T (1938) Adsorption of gases in multi molecular layers. J Am Chem Soc 60(2):309

    Article  Google Scholar 

  26. Davidson JK, Haas WO, Meroherter JL, Miller RS, Smith DJ (1959) The fast oxide breeder: the fuel cycle. KAPL-1757 28

  27. Flagg JF (1960) Chemical processing of reactor fuels. Academic Press, New York

    Google Scholar 

  28. Ferris LM, Kibbey AH (1960) Sulfex-thorex and darex-thorex processes for the dissolution of consolidated edison power reactor fuel: laboratory development, ORNL

  29. Yu JF, Ji C (1992) Interfacial chemistry and kinetics-controlled reaction mechanism of organophosphoric acid mixed extraction systems. Chem J Chin Univ 13:224

    CAS  Google Scholar 

  30. Grenman H, Ingves M, Warna J, Corander J, Murzin DY, Salmi T (2011) Common potholes in modelling solid–liquid reactions-methods for avoiding them. Chem Eng Sci 66:4459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustine, E., Desigan, N., Pandey, N.K. et al. Analysis of kinetic data for the dissolution of UO2 fuel pellets in nitric acid. J Radioanal Nucl Chem 324, 211–218 (2020). https://doi.org/10.1007/s10967-020-07072-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07072-1

Keywords

Navigation