Skip to main content
Log in

Assessment of radiation doses from natural radioactivity measurements in the spa centres of Kütahya Province, Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Kütahya is one of the provinces with many well-known spas in Turkey. Radionuclide levels in the thermal waters of these spas have not been measured before. Therefore, the radon and radium concentrations in thermal waters collected from Kütahya spas were measured using the collector chamber method. In addition, the indoor radon concentrations of spas were determined using LR-115 type II solid-state nuclear track detectors. The annual effective doses from the inhalation and ingestion of radon and radium concentrations have been calculated. The sampling points' physical and chemical properties were also measured during the survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sahin L, Çetinkaya H, Sac MM, Içhedef M (2013) Determination of radon and radium concentrations in drinking water samples around the City of Kutahya. Radiat Prot Dosimetry 155(4):474–482

    Article  CAS  Google Scholar 

  2. Hidayath M, Chandrashekara MS, Pruthvi Rani KS, Namitha SN (2022) Studies on the concentration of 226Ra and 222Rn in drinking water samples and efective dose to the population of Davanagere district, Karnataka state, India. J Radioanal Nuclear Chem. https://doi.org/10.1007/s10967-022-08240-1

    Article  Google Scholar 

  3. Ivanova K, Dzhunakova D, Stojanovska Z, Djounova J, Kunovska B, Chobanova N (2022) Analysis of exposure to radon in Bulgarian rehabilitation hospitals. Environ Sci Pollut Res 29:19098–19108. https://doi.org/10.1007/s11356-021-17143-9

    Article  CAS  Google Scholar 

  4. Kulalı F, Akkurt I, Özgür N (2017) The effect of meteorological parameters on radon concentration in soil gas. Acta Phys Pol A 132:999–1001

    Article  Google Scholar 

  5. Tabar E, Yakut H (2014) Radon measurements in water samples from the thermal springs of Yalova basin, Turkey. J Radioanal Nucl Chem 299:311–319

    Article  CAS  Google Scholar 

  6. Kalinci Y (2006) Dikili'de Jeotermal Bölgesel Isıtma Sisteminin Araştırılması (Master Thesis), D.E.Ü. Fen Bilimleri Enstitüsü, Izmir.

  7. Chaudhuri H, Das NK, Bhandari RK, Sen P, Sinha B (2010) Radon activity measurements around Bakreswar thermal springs. Radiat Meas 45:143–146

    Article  CAS  Google Scholar 

  8. Szabo Z, DePaul VT, Fischer JM, Kraemer TF, Jacobsen E (2012) Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Appl Geochem 27:729–752

    Article  CAS  Google Scholar 

  9. Republic of Türkiye Kütahya Governorship, Directorate of Kütahya Province Culture and Tourism (2019) Kütahya in Thermal Tourism, Kütahya, Türkiye

  10. Sahin L, Hafızoğlu N, Çetinkaya H, Manisa K, Bozkurt E, Biçer A (2017) Assessment of radiological hazard parameters due to natural radioactivity in soils from granite—Rich regions in Kütahya Province, Turkey. Isot Environ Health Stud 53:212–221

    Article  CAS  Google Scholar 

  11. Avcı F (2012) Kütahya İlinin Turizm Coğrafyası (Master Thesis), Atatürk Üniversitesi Sosyal Bilimler Enstitüsü, Erzurum.

  12. Erdogan M, Ozdemir F, Eren N (2013) Measurements of radon concentration levels in thermal waters in the region of Konya, Turkey. Isot Environ Health Stud 49(4):567–574

    Article  CAS  Google Scholar 

  13. Erdogan M, Eren N, Demirel S, Zedef V (2013) Determination of radon concentration levels in well water in Konya, Turkey. Radiat Protect Dosimetry 156(4):489–494

    Article  CAS  Google Scholar 

  14. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Exposure Due to Natural Radiation Sources. United Nations, New York

    Google Scholar 

  15. Doğan M, Ganioğlu E, Sahin L, Hafızoğlu N (2018) Investigation of radon concentrations in some reservoirs, spring and tap waters in İstanbul, Turkey. J Radioanal Nucl Chem 315:653–660

    Article  Google Scholar 

  16. Sahin L, Çetinkaya H, Gelgün S (2016) Assessment of annual effective dose due to the indoor radon exposure in a second-degree earthquake zone of Kutahya (Turkey). Rom J Phys 61(3–4):687–696

    Google Scholar 

  17. Erees FS, Yener G, Salk M, Özbal Ö (2006) Measurements of radon content in soil gas and in the thermal waters in Western Turkey. Radiat Meas 41:354–361

    Article  CAS  Google Scholar 

  18. Boğaziçi University, Kandilli Observatory and Earthquake Research Institute (KOERI), http://www.koeri.boun.edu.tr/sismo/Depremler/onemliler/17_02_2009_simav_kutahya.htm

  19. Boğaziçi University, Kandilli Observatory and Earthquake Research Institute (KOERI), http://udim.koeri.boun.edu.tr/zeqmap/osmapen.asp

  20. Hafızoğlu N, Sahin L, Ganioğlu E, Ağgez G, Yıldırım Baştemur G, İsel P (2020) Assessment of natural and anthropogenic radioactivity of the princes’ Islands in the Sea of Marmara. Water Air Soil Pollution 231(261):1–16

    Google Scholar 

  21. Ongori JN, Lindsay R, Mvelase MJ (2015) Radon transfer velocity at the water–air interface. Appl Radiat Isot 105:144–149

    Article  CAS  Google Scholar 

  22. Ćujić M, Mandić LJ, Petrović J, Dragović R, Đorđević M, Đokić M, Dragović S (2021) Radon-222:environmental behavior and impact to (human and non-human) biota. Int J Biometeorol 65:69–83

    Article  Google Scholar 

  23. Al-Harahsheh S, Al-Dalabeeh M (2020) Measurement of radon levels in the groundwater of Al-Rusaifah City in Zarqa governorate using liquid scintillation counter. Jordan J Earth Environ Sci 11(2):98–102

    Google Scholar 

  24. Yarar Z, Taşköprü C, İçhedef M, Saç MM¸ Kumru MN, (2014) Indoor radon levels of spas and dwellings located around Bayındır geothermal region. J Radioanal Nucl Chem 299:343–349

    Article  CAS  Google Scholar 

  25. Baltrenas P, Grubliauskas R, Danila V (2020) Seasonal variation of indoor radon concentration levels in different premises of a university building. Sustainability 12(6174):2–15

    Google Scholar 

  26. Erdogan M, Abaka M, Manisa K, Bircan H, Kus C, Zedef V (2020) Indoor radon activity concentration and effective dose rates at schools and thermal spas of Ilgın. Nuclear Technol Radiat Protect 35(4):339–346

    Article  CAS  Google Scholar 

  27. Manic G, Petrovic S, Vesna M, Popovic D, Todorovic D (2006) Radon concentrations in a spa in Serbia. Environ Int 32:533–537

    Article  CAS  Google Scholar 

  28. Silva AS, Dinis ML, Pereira AJSC (2016) Assessment of indoor radon levels in Portuguese thermal spas. Radioprotection 51(4):249–254

    Article  CAS  Google Scholar 

  29. Labidi S, Al-Azmi D, Salah RB (2012) Indoor radon in Tunisian spas. Radioprotection 47(3):361–373

    Article  Google Scholar 

  30. Facchini U, Garavaglia M, Magnoni S, Rinaldi F, Cassinis R, Delcourt-Honorez M, Ducarme B (1995) Radon levels in a deep geothermal well in the Po plain. In: C Dubois (Ed) Gas Geochemistry, vol 16 (suppl) (1994). Environ. Geochem. Health, Science Reviews Northwood, pp 257–279

  31. Song G, Wang X, Chen D, Chen Y (2011) Contribution of 222Rn bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China. J Environ Radioact 102(4):400–406

    Article  CAS  Google Scholar 

  32. Bertolo A, Bigliotto C (2004) Radon concentration in waters of geothermal Euganean basin-Veneto, Italy. Radiat Prot Dosim 111(4):355–358

    Article  CAS  Google Scholar 

  33. Duenas C, Fernandez MC, Enraquez C, Carretero J, Liger E (1998) Natural radioactivity levels in Andalusian spas. Water Res 32(8):2271–2278

    Article  CAS  Google Scholar 

  34. Nikolov J, Todorovic N, Petrovic Pantic T, Forkapic S, Mrdja D, Bikit I, Krmar M, Veskovic M (2012) Exposure to radon in the radon spa Niska Banja, Serbia. Radiat Meas 47:443–450

    Article  CAS  Google Scholar 

  35. Oner F, Yigitoglu I, Yalim HA (2013) Measurements of radon concentrations in spa waters in Amasya, Turkey. Radiat Prot Dosim 157(2):221–224

    Article  CAS  Google Scholar 

  36. Gurler O, Akar U, Kahraman A, Yalcin S, Kaynak G, Gundogdu O (2010) Measurements of radon levels in thermal waters of Bursa, Turkey. Fresenius Environ Bull 19(12a):3013–3017

    CAS  Google Scholar 

  37. Kozlowska B, Walencik A, Dorda J, Zipper W (2010) Radon in groundwater and dose estimation for inhabitants in spas of the Sudety Mountain area. Poland Appl Radiat Isot 68(4–5):854–857

    Article  CAS  Google Scholar 

  38. Vogiannis E, Nikolopoulos D, Louizi A, Halvadakis CP (2004) Radon variations during treatment in thermal spas of Lesvos Island (Greece). J Environ Radioact 75:159–170

    Article  CAS  Google Scholar 

  39. Tabar E, Kumru MN, Saç MM, İçhedef M, Bolca M, Özen F (2013) Radiological and chemical monitoring of Dikili geothermal waters Western Turkey. Radiat Phys Chem 91:89–97

    Article  CAS  Google Scholar 

  40. Roba CA, Nita D, Cosma C, Codrea V, Olah S (2012) Correlations between radium and radon occurrence and hydrogeochemical features for various geothermal aquifers in Northwestern Romania. Geothermics 42:32–46

    Article  CAS  Google Scholar 

  41. Eross A, Madl-Szonyi J, Surbeck H, Horvath A, Goldscheider N, Csoma AE (2012) Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. J Hydrol 426–427:124–137

    Article  Google Scholar 

  42. Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1982) Levels and effects of ionizing radiation. United Nations, New York

    Google Scholar 

  43. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1988) Sources, effects, and risks of ionizing radiation. United Nations, New York

    Google Scholar 

  44. World Health Organization (WHO) (2009) WHO handbook on indoor radon: a public health perspective, Geneva, Switzerland

Download references

Acknowledgements

This study is a part of the M.Sc. thesis being prepared in the Physics Department, Dumlupınar University. We also would like to thank the Ege University Nuclear Science Institute for letting us use their laboratory for the measurement of radon and radium in water samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latife Sahin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, L., Durak, S. & Hafızoğlu, N. Assessment of radiation doses from natural radioactivity measurements in the spa centres of Kütahya Province, Turkey. J Radioanal Nucl Chem 331, 2993–3004 (2022). https://doi.org/10.1007/s10967-022-08342-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08342-w

Keywords

Navigation