Skip to main content
Log in

Radon-222: environmental behavior and impact to (human and non-human) biota

  • Special Issue: Atmospheric Electricity and Biometeorology
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

As an inert radioactive gas, 222Rn could be easily transported to the atmosphere via emanation, migration, or exhalation. Research measurements pointed out that 222Rn activity concentration changes during the winter and summer months, as well as during wet and dry season periods. Changes in radon concentration can affect the atmospheric electric field. At the boundary layer near the ground, short-lived daughters of 222Rn can be used as natural tracers in the atmosphere. In this work, factors controlling 222Rn pathways in the environment and its levels in soil gas and outdoor air are summarized. 222Rn has a short half-life of 3.82 days, but the dose rate due to radon and its radioactive progeny could be significant to the living beings. Epidemiological studies on humans pointed out that up to 14% of lung cancers are induced by exposure to low and moderate concentrations of radon. Animals that breed in ground holes have been exposed to the higher doses due to radiation present in soil air. During the years, different dose-effect models are developed for risk assessment on human and non-human biota. In this work are reviewed research results of 222Rn exposure of human and non-human biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abo-Elmagd M, Daif MM, Eissa HM (2008) Cytogenetic effects of radon inhalation. Radiat Meas 43:1265–1269

    CAS  Google Scholar 

  • Adepelumi AA, Ajayi TR, Ako BD, Ojo AO (2005) Radon soil gas as a geological mapping tool: case study from basement complex of Nigeria. Environ Geol 48:762–770

    CAS  Google Scholar 

  • Akerblom G, Lindgren J (1997) Mapping of groundwater radon potential. International Atomic Energy Agency, IAEA TECDOC-980, Vienna, pp 237-255

  • Al Jassim M, Isaifan R (2018) A review on the sources and impacts of radon indoor air pollution. J Environ Toxicol Stud 2(1). https://doi.org/10.16966/2576-6430.112

  • Alali AE, Al-Shboul KF, Yaseen QB, Alaroud A (2019) Assessment of radon concentrations and exposure doses in dwellings surrounding a high capacity gas turbine power station using passive measurements and dispersion modeling. J Environ Radioact 196:9–14

    CAS  Google Scholar 

  • Amin YM, Mahat RH, Doraisamy SJ, Subramaniam SY (1995) The effect of grain sizes on the radon emanation rate. Appl Radiat Isot 46(6–7):621–622

    CAS  Google Scholar 

  • Asher-Bolinder S, Owen DE, Schumann RR (1971) A preliminary evaluation of environmental factors influencing day-to-day and seasonal soil-gas radon concentrations. In: Gundersen LCS, Wanty RB (eds) Studies of radon in rocks, soils, and water. US Geological Survey Bulletin, pp 23–31

    Google Scholar 

  • Baixeras C, Erlandsson B, Font LL, Jönsson G (2001) Radon emanation from soil samples. Radiat Meas 34:441–443

    CAS  Google Scholar 

  • Ball TK, Cameron DG, Colman TB, Roberts PD (1991) Behaviour of radon in the geological environment: a review. Q J Eng Geol Hydrogeol 24(2):169–182

    Google Scholar 

  • Barbosa SM, Lopes F, Correia AD, Barbosa S, Pereira AC, Neves LF (2015) Temporal variability of radon in a remediated tailing of uranium ore processing – the case of Urgeiriça (Central Portugal). J Environ Radioact 142:14–23

    CAS  Google Scholar 

  • Barton TP, Ziemer PL (1986) The effects of particle size and moisture content on the emanation of Rn from coal ash. Health Phys 50(5):581–588

    CAS  Google Scholar 

  • Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J Environ Radioact 102:500–513

    CAS  Google Scholar 

  • Baskaran M (2016) Radon: a tracer for geological, geophysical and geochemical studies. Springer International Publishing AG, Cham

    Google Scholar 

  • Baykara O, Doğru M (2006) Measurements of radon and uranium concentration in water and soil samples from East Anatolian active fault systems (Turkey). Radiat Meas 41:362–367

    CAS  Google Scholar 

  • Baysson H, Tirmarche M, Tymen G, Gouva S, Caillaud D, Artus JC, Vergnenegre A, Ducloy F, Laurier D (2004) Indoor radon and lung cancer in France. Epidemiology 15(6):709–716

    Google Scholar 

  • Beamish D (2013) Gamma ray attenuation in the soils of Northern Ireland, with special reference to peat. J Environ Radioact 115:13–27

    CAS  Google Scholar 

  • Belgacem A, Souid F, Telahigue F, Kharroubi A (1998) Temperature and radon-222 as tracer of groundwater flow: application to El Hamma geothermal aquifer system, southeastern Tunisia. Arab J Geosci 8(12):11161–11174

    Google Scholar 

  • Bem H, Plota U, Staniszewska M, Maria Bem E, Mazurek D (2014) Radon (222Rn) in underground drinking water supplies of the southern Greater Poland region. J Radioanal Nucl Chem 299:1307–1312

    CAS  Google Scholar 

  • Beresford N, Barnett C, Vives i Batlle J, Potter ED, Ibrahimi Z-F, Barlow TS et al (2012) Exposure of burrowing mammals to 222Rn. Sci Total Environ 431:252–261

    CAS  Google Scholar 

  • Bollhöfer A, Storm J, Martin P, Tims S (2003) Geographic variability in radon exhalation at the rehabilitated Nabarlek uranium mine, Northern Territory. Australian Government, Department of the Environment and Heritage, Supervising Scientist, Internal Report 465

  • Bølviken B, Celius EG, Nilsen R, Strand T (2003) Radon: a possible risk factor in multiple sclerosis. Neuroepidemiology 22:87–94

    Google Scholar 

  • Bossew P, Žunić ZS, Stojanovska Z, Tollefsen T, Carpentieri C, Veselinović N, Komatina S, Vaupotić J, Simović RD, Antignani S, Bochicchio F (2014) Geographical distribution of the annual mean radon concentrations in primary schools of Southern Serbia - application of geostatistical methods. J Environ Radioact 127:141–148

    CAS  Google Scholar 

  • Bruzzone D, Bussallino M, Castello G, Maggiolo S, Rossi D (2006) Measurement of the concentration of radon gas in the Toirano’s caves (Liguria). Ann Chim 96(9–10):515–524

    Google Scholar 

  • Buccianti A, Apollaro C, Bloise A, De Rosa R, Falcone G, Scarciglia F, Tallarico A, Vecchio G (2009) Natural radioactivity levels (K, Th, U and Rn) in the Cecita Lake area (Sila Massif, Calabria, southern Italy): an attempt to discover correlations with soil features on a statistical base. Geoderma 152:145–156

    CAS  Google Scholar 

  • Burghele B, Ţenter A, Cucoş A, Dicu T, Moldovan M, Papp B, Szacsvai K, Neda T, Suciu L, Lupulescu A, Maloş C, Florică Ş, Baciu C, Sainz C (2019) The FIRST large-scale mapping of radon concentration in soil gas and water in Romania. Sci Total Environ 669:887–892

    CAS  Google Scholar 

  • Burkhart JF, Huber T, Bolling G (2013) Potential radon release during fracking in Colorado. In: Burkhart JF, Brodhead W, George A, Hodgden G, Jenkins P, Moorman L (eds) Proceedings of the 2013 international AARST symposium, Sep 22–25; Springfield, IL: American Association of Radon Scientists and Technologists, pp 22–29

  • Buttafuoco G, Tallarico A, Falcone G, Guagliardi I (2010) A geostatistical approach for mapping and uncertainty assessment of geogenic radon gas in soil in an area of southern Italy. Environ Earth Sci 61:491–505

    CAS  Google Scholar 

  • Cafaro C, Bossew P, Giovani C, Garavaglia M (2014) Definition of radon prone areas in Friuli Venezia Giulia region, Italy, using geostatistical tools. J Environ Radioact 138:208–219

    CAS  Google Scholar 

  • Chen J (2005) Canadian individual risks of radon-induced lung cancer for different exposure profiles. C J Public Health 96:360–363

    Google Scholar 

  • Chen J (2017a) Comparative study of radon exposure in Canadian homes and uranium mines—a discussion on the importance of national radon program. Radiat Prot Dosim 177:83–86

    CAS  Google Scholar 

  • Chen J (2017b) Lifetime lung cancer risks associated with indoor radon exposure based on various radon risk models for Canadian population. Radiat Prot Dosim 173:252–258

    CAS  Google Scholar 

  • Chen J (2019) Risk assessment for radon exposure in various indoor environments. Radiat Prot Dosim:1–8

  • Choubey VM, Sharma KK, Ramola RC (1997) Geology of radon occurrence around Jari in Parvati Valley, Himachal Pradesh, India. J Environ Radioact 34(2):139–147

    CAS  Google Scholar 

  • Choubey VM, Bist KS, Saini NK, Ramola RC (1999) Relation between soil-gas radon variation and different lithotectonic units, Garhwal Himalaya, India. Appl Radiat Isot 51:487–592

    Google Scholar 

  • Choubey VM, Bartarya SK, Ramola RC (2003) Radon in groundwater of eastern Doon valley, Outer Himalaya. J Radioanal Nucl Chem 36(1):401–405

    CAS  Google Scholar 

  • Cigna AA (2005) Radon in caves. Int J Speleol 34(1–2):1–18

    Google Scholar 

  • Cinelli G, Tositti L, Capaccioni B, Brattich E, Mostacci D (2015) Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environ Geochem Health 37:305–319

    CAS  Google Scholar 

  • Cinelli G, Tollefsen T, Bossew P, Gruber V, Bogucarskis K, De Felice L, De Cort M (2019) Digital version of the European Atlas of natural radiation. J Environ Radioact 196:240–252

    CAS  Google Scholar 

  • Crockett RGM, Perrier F, Richon P (2010) Spectral-decomposition techniques for the identification of periodic and anomalous phenomena in radon time-series. Nat Hazard Earth Sys 10:559–564

    Google Scholar 

  • Ćujić M, Dragović S (2018) Assessment of dose rate to terrestrial biota in the area around coal fired power plant applying ERICA tool and RESRAD BIOTA code. J Environ Radioact 188:108–114

    Google Scholar 

  • Damjær A, Korsbech U (1985) Measurement of the emanation of radon-222 from Danish soils. Sci Total Environ 45:343–350

    Google Scholar 

  • Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Schaffrath Rosario A, Tirmarche M, Tomášek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ: Brit Med J 330:223–226

    CAS  Google Scholar 

  • De Groot AV, van der Graaf ER, de Meijer RJ, Maučec M (2009) Sensitivity of in-situ γ-ray spectra to soil density and water content. Nucl Instrum Method A 600:519–523

    Google Scholar 

  • Decree No. 307/2002 Coll. of the State Office for Nuclear Safety of 13 June 2002 on Radiation Protection (2002)

  • Dent DL, MacMillan RA, Mayr TL, Chapman W, Berch SM (2013) Use of airborne gamma radiometrics to infer soil properties for a forested area in British Columbia, Canada. J Ecosyst Manag 14:1–12

    Google Scholar 

  • Dragović S, Gajić B, Dragović R, Janković-Mandić L, Slavković-Beškoski L, Mihailović N, Momčilović M, Ćujić M (2012) Edaphic factors affecting the vertical distribution of radionuclides in the different soil types of Belgrade, Serbia. J Environ Monit 14:127–137

    Google Scholar 

  • Dubois G (2005) An overview of radon surveys in Europe. Office for Official Publication of the European Communities, Luxembourg ISBN 92–79–01066-2, European Communities, Printed in Italy

    Google Scholar 

  • Dueñas C, Fernández MC, Carretero J, Liger E, Pérez M (1997) Release of 222Rn from some soils. Ann Geophys 15:124–133

    Google Scholar 

  • Dushe C, Kümmel M, Schulz H (2003) Investigations of enhanced outdoor radon concentration in Johanngeorgenstadt (Saxony). Health Phys 84(5):655–663

    CAS  Google Scholar 

  • Edsfeldt C (2001) The radium distribution in some Swedish soils and its effects on radon emanation. Dissertation, Royal institute of Technology, Stockholm

  • Eff-Darwich A, Martín-Luis C, Quesada M, de la Nuez J, Coello J (2002) Variations on the concentration of 222Rn in the subsurface of the volcanic island of Tenerife, Canary Islands. Geophys Res Lett 29(22):26–1–26-4

    Google Scholar 

  • Elío J, Crowley Q, Scanlon R, Hodgson J, Zgaga L (2018) Estimation of residential radon exposure and definition of radon priority areas based on expected lung cancer incidence. Environ Int 114:69–76

    Google Scholar 

  • Erdogan M, Ozdemir F, Eren N (2013) Measurements of radon concentration levels in thermal waters in the region of Konya, Turkey. Isot Environ Health Stud 49(4):567–574

    CAS  Google Scholar 

  • Forkapic S, Maletić D, Vasin J, Bikit K, Mrdja D, Bikit I, Udovičić V, Banjanac R (2017) Correlation analysis of the natural radionuclides in soil and indoor radon in Vojvodina, province of Serbia. J Environ Radioact 166:403–411

    CAS  Google Scholar 

  • Gates AE, Gundersen LCS (1992) Sensitivity of soil radon to geology and the distribution of radon and uranium in the Hylas zone area, Virginia. In: Gates AE, Gundersen LCS (eds) Geologic controls on radon, Geological Society of America Special Paper, Denver, vol 271, pp 17–27

    Google Scholar 

  • Geiger G, Barnes KB (1994) Indoor radon hazard: a geographical assessment and case study. Appl Geogr 14:350–371

    Google Scholar 

  • Gillmore GK, Phillips PS, Denman AR (2005) The effects of geology and the impact of seasonal correction factors on indoor radon levels: a case study approach. J Environ Radioact 84(3):469–479

    CAS  Google Scholar 

  • Giustini F, Ciotoli G, Rinaldini A, Ruggiero L, Voltaggio M (2019) Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: a case study from a volcanic area of Central Italy. Sci Total Environ 661:449–464

    CAS  Google Scholar 

  • Gomez-Ros JM, Prohl G, Taranenko V (2004) Estimation of internal and external exposures of terrestrial reference organisms to natural radionuclides in the environment. J Radiol Prot 24:A79–A88

    CAS  Google Scholar 

  • Gray A, Read S, McGale P, Darby S (2009) Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. BMJ 338:a3110

    Google Scholar 

  • Greeman DJ, Rose AW (1996) Factors controlling the emanation of radon and thoron in soils of the eastern U.S.A. Chem Geol 129(1):1–14

    CAS  Google Scholar 

  • Gregorič A, Zidanšek A, Vaupotič J (2011) Dependence of radon levels in Postojna Cave on outside air temperature. Nat Hazards Earth Syst Sci 11:1523–1528

    Google Scholar 

  • Gregorič A, Vaupotič J, Šebela S (2014) The role of cave ventilation in governing cave air temperature and radon levels (Postojna Cave, Slovenia). Int J Climatol 34:1488–1500

    Google Scholar 

  • Gruber V, Bossew P, De Cort M, Tollefsen T (2013) The European map of the geogenic radon potential. J Radiol Prot 33:51–60

    CAS  Google Scholar 

  • Gundersen LCS (1993) The correlation between bedrock geology and indoor radon: where it works and where it doesn’t-some examples from the eastern United States. In: The 1993 international radon conference, September 20–22, 1993, Denver, Colorado, pp IV1-IV8

  • Gundersen LCS, Schumann RR, Otton JK, Dubiel RF, Owen DE, Dickinson KA (1992) Geology of radon in the United States. In: Gates AE, Gundersen LCS (eds) Geologic controls on radon, Geological Society of America Special Paper, Denver, vol 271, pp 1–16

    Google Scholar 

  • Hafez YI, Awad ES (2016) Finite element modeling of radon distribution in natural soils of different geophysical regions. Cogent Phys 3:1–12

    Google Scholar 

  • Harley NH (1988) Radon daughter dosimetry in the rat tracheobronchial tree. Radiat Prot Dosim 24:457–461

    Google Scholar 

  • Harris SA, Billmeyer ER, Robinson MA (2006) Evaluation of repeated measurements of radon-222 concentrations in well water sampled from bedrock aquifers of the Piedmont near Richmond, Virginia, USA: effects of lithology and well characteristics. Environ Res 101(3):323–333

    CAS  Google Scholar 

  • Hassan NM, Hosoda M, Ishikawa T, Sorimachi A, Sahoo SK, Tokonami S, Fukushi M (2009) Radon migration process and its influence factors; review. Jpn J Health Phys 44(2):218–231

    CAS  Google Scholar 

  • Hoff A (1997) Radon transport in fractured soil: laboratory experiments and modelling. Risoe National Laboratory, Roskilde

    Google Scholar 

  • Hofmann W, Crawford-Brown DJ, Fakir H, Monchaux G (2006) Modelling lung cancer incidence in rats following exposure to radon progeny. Radiat Prot Dosim 122:345–348

    CAS  Google Scholar 

  • Hopke PK, Borak TB, Doull J, Cleaver JE, Eckerman KF, Gundersen LCS, Harley NH, Hess CT, Kinner NE, Kopecky KJ, McKone TE, Sextro RG, Simon SL (2000) Health risks due to radon in drinking water. Environ Sci Technol 34:921–926

    CAS  Google Scholar 

  • Horvath AD, Bohus LO, Urbani F, Marx G, Piroth A, Greaves ED (2000) Radon concentrations in hot spring waters in northern Venezuela. J Environ Radioact 47(2):127–133

    CAS  Google Scholar 

  • Hosoda M, Shimo M, Sugino M, Furukawa M, Fukushi M (2007) Effect of soil moisture content on radon and thoron exhalation. J Nucl Sci Technol 44(4):664–672

    CAS  Google Scholar 

  • Hughes J, Turk B, Cardwell R (1999) Karst geology, radon fluctuations, and implications for measurement and mitigation. In: Radon in the Living Environment, Athens, pp 5.1–5.30

  • ICRP (1993) Protection against radon-222 at home and at work, ICRP publications 65. Pergamon Press, Oxford

    Google Scholar 

  • ICRP (2007) The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann. ICRP 37 (2-4)

  • Ielsch G, Cushing ME, Combes P, Cuney M (2010) Mapping of the geogenic radon potential in France to improve radon risk management: methodology and first application to region Bourgogne. J Environ Radioact 101:813–820

    CAS  Google Scholar 

  • Isam Salih MM, Pettersson HB, Lund E (2002) Uranium and thorium series radionuclides in drinking water from drilled bedrock wells: correlation to geology and bedrock radioactivity and dose estimation. Radiat Prot Dosim 102(3):249–258

    CAS  Google Scholar 

  • Iskandar D, Yamazawa H, Iida T (2004) Quantification of the dependency of radon emanation power on soil temperature. Appl Radiat Isot 60(6):971–973

    CAS  Google Scholar 

  • Kardos R, Gregorič A, Jónás J, Vaupotič J, Kovács T, Ishimori Y (2015) Dependence of radon emanation of soil on lithology. J Radioanal Nucl Chem 304:1321–1327

    CAS  Google Scholar 

  • Kemski J, Klingel R, Siehl A (1996) Classification and mapping of radon-affected areas in Germany. Environ Int 22:789–798

    Google Scholar 

  • Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M (2001) Mapping the geogenic radon potential in Germany. Sci Total Environ 272:217–230

    CAS  Google Scholar 

  • Khan F, Ali N, Khan EU, Khattak NU, Khan K (2009) Radon monitoring in water sources of Balakot and Mansehra cities lying on a geological fault line. Radiat Prot Dosim 138(2):174–179

    Google Scholar 

  • Kikaj D, Jeran Z, Bahtijari M, Stegnar P (2016) Radon in soil gas in Kosovo. J Environ Radioact 164:245–252

    CAS  Google Scholar 

  • Kim S-H, Hwang WJ, Cho J-S, Kang DR (2016) Attributable risk of lung cancer deaths due to indoor radon exposure. Ann Occupat Environ Med 28:8

    Google Scholar 

  • King CY, Minissale A (1994) Seasonal variability of soil-gas radon concentration in Central California. Radiat Meas 23(4):683–692

    CAS  Google Scholar 

  • King CY, King BS, Evans WC, Zhang W (1996) Spatial radon anomalies on active faults in California. Appl Geochem 11:497–510

    CAS  Google Scholar 

  • Kitowski I, Komosa A, Chodorowski J (2015) Absorbed radiation dose from radon to the Sand Martin Riparia riparia during breeding at the sand mines in eastern Poland. Int J Environ Res 9(3):1097–1106

    CAS  Google Scholar 

  • Koike K, Yoshinaga T, Ueyama T, Asaue H (2014) Increased radon-222 in soil gas because of cumulative seismicity at active faults. Earth Planets Space 66(57):1–9

    Google Scholar 

  • Kowalczk AJ, Froelich PN (2010) Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breathe? Earth Planet Sci Lett 289:209–219

    CAS  Google Scholar 

  • Kozak K, Swakoń J, Paszkowski M, Gradziński R, Łoskiewicz J, Janik M, Mazur J, Bogacz J, Horwacik T, Olko P (2005) Correlation between radon concentration and geological structure of the Krakow area. Radioact Environ 7(7):464–469

    CAS  Google Scholar 

  • Kropat G, Bochud F, Murith C, Palacios Gruson M, Baechler S (2017) Modeling of geogenic radon in Switzerland based on ordered logistic regression. J Environ Radioact 166:376–381

    CAS  Google Scholar 

  • Külahcı F, Şen Z (2014) On the correction of spatial and statistical uncertainties systematic measurements of 222Rn for earthquake prediction. Surv Geophys 35(2):449–478

    Google Scholar 

  • Kümmel M, Dushe C, Müller S, Gehrcke K (2014a) Outdoor 222Rn-concentrations in Germany–part 2–former mining areas. J Environ Radioact 132:131–137

    Google Scholar 

  • Kümmel M, Dushe C, Müller S, Gehrcke K (2014b) Outdoor 222Rn-concentrations in Germany–part 1–natural background. J Environ Radioact 132:123–130

    Google Scholar 

  • Kunovska B, Ivanova K, Stojanovska Z, Vuchkov D, Zaneva N (2013) Measurements of radon concentration in soil gas of urban areas, Bulgaria. Rom J Physiol 58(Supplement):S172–S179 Bucharest

    Google Scholar 

  • Lanctot EM, Rand PW, Lacombe EH, Hess CT, Bogdan GF (1992) The influence of season, bedrock, overburden, and house construction on airborne levels of radon in Maine homes. In: Gates AE, Gundersen LCS (eds) Geologic controls on radon, Geological Society of America Special Paper, Denver, vol 271, pp 79–88

    Google Scholar 

  • Landa ER (1987) Radium-226 contents and Rn emanation coefficients of particle-size fractions of alkaline, acid and mixed U mill tailings. Health Phys 52(3):303–310

    CAS  Google Scholar 

  • Lawrence CE (2005) Measurement of 222Rn exhalation rates and 210Pb deposition rates in a tropical environment. Dissertation, Queensland University of Technology

  • Li X, Song B, Zheng B, Wang Y, Wang X (2010) The distribution of radon in tunnels with different geological characteristics in China. J Environ Radioact 101(5):345–348

    CAS  Google Scholar 

  • Loomis DP, Watson JE Jr, Crawford-Brown DJ (1988) Predicting the occurrence of radon-222 in groundwater supplies. Environ Geochem Health 10(2):41–50

    CAS  Google Scholar 

  • Macdonald CR, Laverock MJ (1998) Radiation exposure and dose to small mammals in radon-rich soils. Arch Environ Contam Toxicol 35:109–120

    CAS  Google Scholar 

  • Magalhães HM, Amaral ECS, Sachett I, Rochedo ERR (2003) Radon-222 in Brazil: an outline of indoor and outdoor measurements. J Environ Radioact 67(2):131–143

    Google Scholar 

  • Manic G, Petrovic S, Vesna M, Popovic D, Todorovic D (2006) Radon concentrations in a spa in Serbia. Environ Int 32:533–537

    CAS  Google Scholar 

  • Maraziotis EA (1996) Effects of intraparticle porosity on the radon emanation coefficient. Environ Sci Technol 30:2441–2448

    CAS  Google Scholar 

  • Markkanen M, Arvela H (1992) Radon emanation from soils. Radiat Prot Dosim 45(1–4):269–272

    CAS  Google Scholar 

  • Martins LMO, Gomes MEP, Neves LJPF, Pereira AJSC (2013) The influence of geological factors on radon risk in groundwater and dwellings in the region of Amarante (Northern Portugal). Environ Earth Sci 68(3):733–740

    CAS  Google Scholar 

  • Marusiakova M, Gregor Z, Tomasek L (2011) National Radiation a review of exposures to radon, long-lived radionuclides and external gamma at the Czech uranium mine. Radiat Prot Dosim 145:248–251

    CAS  Google Scholar 

  • Mazur J, Kozak K (2014) Complementary system for long term measurements of radon exhalation rate from soil. Rev Sci Instrum 85:022104

    CAS  Google Scholar 

  • Morawska L, Phillips C (1993) Dependence of the radon emanation coefficient on radium distribution and internal structure of the material. Geochim Cosmochim Acta 57:1783–1797

    CAS  Google Scholar 

  • Moreno V, Bach J, Font L, Baixeras C, Zarroca M, Linares R, Roque C (2016) Soil radon dynamics in the Amer fault zone: an example of very high seasonal variations. J Environ Radioact 151:293–303

    CAS  Google Scholar 

  • Morland G, Strand T, Furuhaug L, Skarphagen H, Banks D (1998) Radon in quaternary aquifers related to underlying bedrock geology. Ground Water 36(1):143–146

    CAS  Google Scholar 

  • Nagaraja K, Prasad BSN, Srinivas N, Madhava MS (2006) Electrical conductivity near the Earth’s surface: ion-aerosol model. J Atmos Sol-Terr Phys 68:757–768

    Google Scholar 

  • Nagda NL (1994) Radon: prevalence, measurements, health risks and control. In: Nagda NL (ed) Radon: prevalence, measurements. Health Risks and Control. American Society for Testing and Materials, Philadelphia, pp 1–8

    Google Scholar 

  • Nikolov J, Todorovic N, Petrovic Pantic T, Forkapic S, Mrdja D, Bikit I, Krmar M, Veskovic M (2012) Exposure to radon in the radon spa Niška Banja, Serbia. Radiat Meas 47:443–450

    CAS  Google Scholar 

  • Oikawa S, Kanno N, Sanada T, Ohashi N, Uesugi M, Sato K, Abukawa J, Higuchi H (2003) A nationwide survey of outdoor radon concentration in Japan. J Environ Radioact 65:203–213

    CAS  Google Scholar 

  • Onishchenko A, Zhukovsky M, Veselinovic N, Zunic ZS (2010) Radium-226 concentration in spring water sampled in high radon regions. Appl Radiat Isot 68:825–827

    CAS  Google Scholar 

  • Otton JK, Schumann RR, Owen DE, Thurman N, Duval JS (1988) Map showing radon potential of rocks and soils in Fairfax County, Virginia, US Geological Survey Miscellaneous Field Studies Map MF-2047, scale 1:62,500

  • Pantelić G, Čeliković I, Živanović M, Vukanac I, Nikolić JK, Cinelli G, Gruber V (2018) Literature review of indoor radon surveys in Europe, Publications Office of the European Union, Luxembourg, ISBN 978–92–79-97643-8 (online), https://doi.org/10.2760/977726 (online), JRC114370

  • Papastefanou C (2002) An overview of instrumentantion for measuring radon in soil gas and groundwaters. J Environ Radioact 63:271–283

    CAS  Google Scholar 

  • Pearson JE, Jones GE (1966) Soil concentrations of “emanating radium-226” and the emanation of radon-222 from soils and plants. Tellus 18(2–3):655–662

    CAS  Google Scholar 

  • Pereira A, Lamas R, Miranda M, Domingos F, Neves L, Ferreira N, Costa L (2017) Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: a case study in Central Portugal. J Environ Radioact 166:270–277

    CAS  Google Scholar 

  • Pérez NM, Hernández PA, Padrón E, Melián G, Marrero R, Padilla G, Barrancos J, Nolasco D (2007) Precursory subsurface 222Rn and 220Rn degassing signatures of the 2004 seismic crisis at Tenerife, Canary Islands. Pure Appl Geophys 164(12):2431–2448

    Google Scholar 

  • Perrier F, Richon P (2010) Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing. J Environ Radioact 101(4):279–296

    CAS  Google Scholar 

  • Perrier F, Richon P, Sabroux JC (2009) Temporal variations of radon concentration in the saturated soil of Alpine grassland: the role of groundwater flow. Sci Total Environ 407:2361–2371

    CAS  Google Scholar 

  • Peterson E, Aker A, Kim JH, Li Y, Brand K, Copes R (2013) Lung cancer risk from radon in Ontario, Canada; how many lung cancers can we prevent? Cancer Causes Control 24:2013–2020

    Google Scholar 

  • Pruthvi Rani KS, Paramesh L, Chandrashekara MS (2014) Diurnal variations of 218Po, 214Pb, and 214Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore city, Karnataka State, India. J Environ Radioact 138:438–443

    CAS  Google Scholar 

  • Przylibski TA (1999) Radon concentration changes in the air of two caves in Poland. J Environ Radioact 45(1):81–94

    CAS  Google Scholar 

  • Quarto M, Pugliese M, Loffredo F, Zambella C, Roca A (2014) Radon measurements and effective dose from radon inhalation estimation in the Neapolitan catacombs. Radiat Prot Dosim 158:442–444

    CAS  Google Scholar 

  • Report NRC (1999) Risk assessment of radon in drinking water. National Academy Press, National Research Council, Washington, DC

    Google Scholar 

  • Robertson A, Allen J, Laney R, Curnow A (2013) The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 14:14024–14063

    Google Scholar 

  • Ruano-Ravina A, Dacosta-Urbieta A, Barros-Diosab JM, Kelsey KT (2018) Radon exposure and tumors of the central nervous system. Gac Sanit 32:567–575

    Google Scholar 

  • Salonen L (1994) 238U series radionuclides as a source of increased radioactivity in groundwater originating from Finnish bedrock. In: Soveri J, Suokko T (eds) Future groundwater resources at risk. IAHS conference Publ. No. 222, June 1994, Helsinki, pp. 71-84

  • Sannappa J, Paramesh L, Venkataramaiah P (1999) Study of radon exhalation rate in soil and air concentrations. Ind J Phys 73B(4):629–639

    CAS  Google Scholar 

  • Sarrou I, Pashalidis I (2003) Radon levels in Cyprus. J Environ Radioact 68:269–277

    CAS  Google Scholar 

  • Savidou A, Sideris G, Zouridakis N (2001) Radon in public water supplies in Migdonia basin, Central Macedonia, Northern Greece. Health Phys 80(2):170–174

    CAS  Google Scholar 

  • Schumann RR, Gundersen LCS (1996) Geologic and climatic controls on the radon emanation coefficient. Environ Int 22(1):439–446

    Google Scholar 

  • Schumann RR, Owen DE (1988) Relationships between geology, equivalent uranium concentration, and radon in soil gas, Fairfax County, Virginia. United states department of the interior, Geological Survey Open-File Report 88-18, pp 1–27

  • Schumann RR, Owen DE, Asher-Bolinder S (1989) Weather factors affecting soil-gas radon concentrations at a single site in the semiarid Western U.S. In: Osborne MC, Harrison J (eds) proceedings of the 1988 EPA symposium on radon and radon reduction technology, pp 1-13

  • Schumann RR, Owen DE, Asher-Bolinder S (1992) Effects of weather and soil characteristics on temporal variations in soil-gas radon concentrations. In: Gates AE, Gundersen LCS (eds) Geologic controls on radon, Geological Society of America Special Paper, Denver, vol 271, pp 65–72

    Google Scholar 

  • Schumann RR, Gundersen LCS, Tanner AB (1994) Geology and occurrence of radon. In: Nagda NL (ed) Radon: prevalence, measurements. Health Risks and Control. American Society for Testing and Materials, Philadelphia, pp 83–96

    Google Scholar 

  • Semkow TM (1990) Recoil-emanation theory applied to radon release from mineral grains. Geochim Cosmochim Acta 54(2):425–440

    CAS  Google Scholar 

  • Sesana L, Caprioli E, Marcazzan GM (2003) Long period study of outdoor radon concentration in Milan and correlation between its temporal variations and dispersion properties of atmosphere. J Environ Radioact 65:147–160

    CAS  Google Scholar 

  • Sharman G (1992) Seasonal and spatial variations in Rn-222 and Rn-220 in soil gas, and implications for indoor radon levels. Environ Geochem Health 14(4):113–120

    CAS  Google Scholar 

  • Shweikani R, Giaddui TG, Durrani SA (1995) The effect of soil parameters on the radon concentration values in the environment. Radiat Meas 25(1–4):581–584

    CAS  Google Scholar 

  • Singh M, Ramola RC, Singh S, Virk HS (1988) The influence of meteorological parameters on soil gas radon. J Assoc Explor Geophys 9(2):85–90

    Google Scholar 

  • Smetanova I, Holý K, Müllerová M, Polášková A (2009) The effect of meteorological parameters on radon concentration in borehole air and water. J Radioanal Nucl Chem 283(1):101–109

    Google Scholar 

  • Smith BJ, Zhang L, Field RW (2007) Iowa radon leukaemia study: a hierarchical population risk model for spatially correlated exposure measured with error. Stat Med 26(25):4619–4642

    Google Scholar 

  • Solomon SB (2019) Reassessment of inhalation doses to workers in Australian show caves. Radiat Prot. https://doi.org/10.1093/rpd/ncz099

  • Sundal AV, Henriksen H, Soldal O, Strand T (2004) The influence of geological factors on indoor radon concentrations in Norway. Sci Total Environ 328(1–3):41–53

    CAS  Google Scholar 

  • Szabó KZ, Jordan G, Horváth Á, Szabó C (2013) Dynamics of soil gas radon concentration in a highly permeable soil based on a long-term high temporal resolution observation series. J Environ Radioact 124:74–83

    Google Scholar 

  • Szabó KZ, Jordan G, Horváth Á, Szabó C (2014) Mapping the geogenic radon potential: methodology and spatial analysis for Central Hungary. J Environ Radioact 129:107–120

    Google Scholar 

  • Tallini M, Parisse B, Petitta M, Spizzico M (2013) Long-term spatio-temporal hydrochemical and 222Rn tracing to investigate groundwater flow and water–rock interaction in the Gran Sasso (Central Italy) carbonate aquifer. Hydrogeol J 21(7):1447–1467

    CAS  Google Scholar 

  • Tanahara A, Taira H, Takemura M (1997) Radon distribution and the ventilation of a limestone cave on Okinawa. Geochem J 31:49–56

    CAS  Google Scholar 

  • Tanner AB (1980) Radon migration in the ground: a supplementary review. In: The natural radiation environment III. National Technical Information Service, Houston, pp 5–56

    Google Scholar 

  • Tchorz-Trzeciakiewicz DE, Solecki AT (2018) Variations of radon concentration in the atmosphere. Gamma dose rate Atmos Environ 174:54–65

    CAS  Google Scholar 

  • The Radiation Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden(2000) Naturally occurring radioactivity in the Nordic countries – recommendations. The radiation protection authorities in Denmark, Finland, Iceland, Norway and Sweden. ISBN 91-89230-00-0

  • Thivya C, Chidambaram S, Thilagavathi R, Prasanna MV, Nepolian M, Tirumalesh K, Noble J (2014) Spatio-temporal identification of regions with anomalous values of 222Rn in groundwater of Madurai District, Tamilnadu, India. Environ Process 1(4):353–367

    CAS  Google Scholar 

  • Todorovic N, Nikolov J, Forkapic S, Bikit I, Mrdja D, Krmar M, Veskovic M (2012) Public exposure to radon in drinking water in SERBIA. Appl Radiat Isot 70:543–549

    CAS  Google Scholar 

  • Tresnjo Z, Adrovic F, Trumic A (2011) The research of radon in brown coal mine Djurdjevik, XXVI Proceedings Tara, Society for Radiation Protection of Serbia and Montenegro pp160–167

  • Udovičić V, Savić M, Joković D, Maletić D, Banjac R, Veselinović N, Tikić M (2015) Radon measurements and exposure estimates in Bogovina Cave. XXVIII Proceedings Vršac, Society for Radiation Protection of Serbia and Montenegro pp207–2011

  • United States Environmental Protection Agency (USEPA) EPA (2003) Assessment of risks from radon in homes, EPA 402-R-03-003

  • UNSCEAR (2000) Annex B. Exposures from natural radiation sources. United Nations, New York, 84–141

  • Varley NR, Flowers AG (1992) Radon and its correlation with some geological features of the South-West of England. Radiat Prot Dosim 45(1–4):245–248

    CAS  Google Scholar 

  • Vaupotič J (2012) Review of radon research in Slovenia. In: Sources and measurements of radon and radon progeny applied to climate and air quality studies. IAEA, Vienna, pp 115–123

    Google Scholar 

  • Vaupotič J, Csige I, Radolić V, Hunyadi I, Planinić J, Kobal I (2001) Methodology of radon monitoring and dose estimates in Postojna Cave, Slovenia. Health Phys 80(2):142–147

    Google Scholar 

  • Vaupotič J, Gregorič A, Kobal I, Žvab P, Kozak K, Mazur J, Kochowska E, Grządziel D (2010) Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia. Nat Hazards Earth Syst Sci 10:895–899

    Google Scholar 

  • Vives i Batlle J, Coppleston D, Jonesc SR (2012) Allometric methodology for the assessment of radon exposures to terrestrial wildlife. Sci Total Environ 427-428:50–59

    CAS  Google Scholar 

  • Vives i Batlle J, Beresford NA, Beaugelin-Seiller K, Bezhenar R, Brown J, Cheng JJ, Ćujić M, Dragović S, Duffa C, Fiévet B, Hosseini A, Jung KT, Kamboj S, Keum D-K, Kryshev A, LePoire D, Maderich V, Min B-I, Periáñez R, Sazykina T, Suh K-S, Yu C, Wang C, Heling R (2016) Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario. J Environ Radioact 153:31–50

    CAS  Google Scholar 

  • Vives i Batlle J, Ulanovsky AV, Copplestone D (2017) A method for assessing exposure of terrestrial wildlife to environmental radon (222Rn) and thoron (220Rn). Sci Total Environ 605-606:569–577

    CAS  Google Scholar 

  • Vuckovic B, Gulan L, Milenkovic B, Stajic JM, Milic G (2016) Indoor radon and thoron concentrations in some towns of central and South Serbia. J Environ Manag 183:938–944

    CAS  Google Scholar 

  • Wilkening M (1990) Radon in the environment. Elsevier Science, New York

    Google Scholar 

  • Winkler-Heil R, Hussain M, Hofmann W (2015) Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment. Radiat Environ Biophys 54:225–241

    CAS  Google Scholar 

  • World Health Organization (2009) WHO handbook on indoor radon: a public health perspective. edited by Zeeb, Hajo, Shannoun, Ferid. http://www.who.int/iris/handle/10665/44149

  • Yasuoka Y, Shinogi M (1997) Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys 72(5):759–761

    CAS  Google Scholar 

  • Yoon JY, Lee JD, Won Joo S, Ryong Kang D (2016) Indoor radon exposure and lung cancer: a review of ecological studies. Ann Occup Environ Med 28:15

    Google Scholar 

  • Zafrir H, Barbosa S, Malik U (2013) Differentiation between the effect of temperature and pressure on radon within the subsurface geological media. Radiat Meas 49(1):39–56

    CAS  Google Scholar 

  • Žunić ZS, Kobal I, Vaupotić J, Kozak K, Mazur J, Birovljev A, Janik M, Čeliković I, Ujić P, Demajo A, Krstić G, Jakupi B, Quarto M, Bochicchio F (2006) High natural radiation exposure in radon spa areas: a detailed field investigation in Niška Banja (Balkan region). J Environ Radioact 89:249–260

    Google Scholar 

  • Žunić ZS, Kozak K, Ciotoli G, Ramola RC, Kochowska E, Ujić P, Čeliković I, Mazur J, Janik M, Demajo A, Birovljev A, Bochicchio F, Yarmoshenko IV, Kryeziu D, Olko P (2007a) A campaign of discrete radon concentration measurements in soil of Niška Banja town, Serbia. Radiat Meas 42:1696–1702

    Google Scholar 

  • Žunić ZS, Yarmoshenko IV, Kelleher K, Paridaens J, Mc Laughlin JP, Čeliković I, Ujić P, Onischenko AD, Jovanović S, Demajo A, Birovljev A, Bochicchio F (2007b) Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia. Sci Total Environ 387:269–275

    Google Scholar 

Download references

Acknowledgements

This article is based upon work from COST Action (CA15211), supported by European Cooperation in Science and Technology (COST). This work is also supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (project III43009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Ćujić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ćujić, M., Janković Mandić, L., Petrović, J. et al. Radon-222: environmental behavior and impact to (human and non-human) biota. Int J Biometeorol 65, 69–83 (2021). https://doi.org/10.1007/s00484-020-01860-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-01860-w

Keywords

Navigation