Skip to main content
Log in

Radiometric mapping and radiation dose assessments in sediments from Şavşat Black Lake, Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, natural and artificial radioactivity concentrations in sediment samples taken from Şavşat Black Lake located on the Nature Park in Artvin were determined using a high purity germanium detector. It was determined that 238U, 232Th, 40K and 137Cs radioisotope concentrations in the sediment samples varied between 8.15 and 32.67, 5.83 and 33.08, 185.88 and 589.30, and 0.86 and 438.04 Bq kg−1, respectively. In order to evaluate the radiological hazards, some radiological parameters were calculated and compared with the values recommended by international organizations. The results showed that the sediments in the study area will not pose any health risk for the visitors of Şavşat Black Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarı S, Dizman S (2020) Investigation of radioactivity and radiological effects in soil samples taken from Ovit Dağbaşı Lake. El-Cezerî Journal of Science and Engineering 2020:1122–1130. https://doi.org/10.31202/ecjse.735215

  2. UNSCEAR (1993) Exposure from natural sources of radiation of radiation. United Nations Scientific Committee on the Effects of Atomic Radiation report to United Nations. UNSCEAR, New York

  3. Otansev P, Taşkin H, Başsari A, Varinlioğlu A (2016) Distribution and environmental impacts of heavy metals and radioactivity in sediment and seawater samples of the Marmara Sea. Chemosphere 154:266–275. https://doi.org/10.1016/j.chemosphere.2016.03.122

    Article  CAS  PubMed  Google Scholar 

  4. Dizman S, Görür FK, Keser R, Görür O (2019) The assessment of radioactivity and radiological hazards in soils of Bolu province, Turkey. Environ Forensics 20:211–218. https://doi.org/10.1080/15275922.2019.1629129

    Article  CAS  Google Scholar 

  5. Yeşilkanat CM, Kobya Y, Taşkin H, Çevik U (2015) Dose rate estimates and spatial interpolation maps of outdoor gamma dose rate with geostatistical methods; A case study from Artvin, Turkey. J Environ Radioact 150:132–144. https://doi.org/10.1016/j.jenvrad.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Du J, Bi Q (2017) Natural radioactivity assessment of surface sediments in the Yangtze Estuary. Mar Pollut Bull 114:602–608. https://doi.org/10.1016/j.marpolbul.2016.09.040

    Article  CAS  PubMed  Google Scholar 

  7. Venunathan N, Kaliprasad CS, Narayana Y (2016) Natural radioactivity in sediments and river bank soil of Kallada river of Kerala, South India and associated radiological risk. Radiat Prot Dosim 171:271–276. https://doi.org/10.1093/rpd/ncw073

    Article  CAS  Google Scholar 

  8. Ramasamy V, Paramasivam K, Suresh G, Jose MT (2014) Function of minerals in the natural radioactivity level of Vaigai River sediments, Tamilnadu, India—spectroscopical approach. Spectrochim Acta A 117:340–350. https://doi.org/10.1016/j.saa.2013.08.022

    Article  CAS  Google Scholar 

  9. Qureshi AA, Tariq S, Din KU et al (2014) Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Radiat Res Appl Sci 7:438–447. https://doi.org/10.1016/j.jrras.2014.07.008

    Article  Google Scholar 

  10. Kobya Y, Taşkın H, Yeşilkanat CM et al (2015) Natural and artificial radioactivity assessment of dam lakes sediments in Çoruh River, Turkey. J Radioanal Nucl Chem 303:287–295. https://doi.org/10.1007/s10967-014-3420-7

    Article  CAS  Google Scholar 

  11. Dizman S, Görür FK, Keser R (2016) Determination of radioactivity levels of soil samples and the excess of lifetime cancer risk in Rize province, Turkey. Int J Radiat Res 14:237–244. https://doi.org/10.18869/acadpub.ijrr.14.3.237

  12. Sathish V, Chandrasekaran A, Manigandan S et al (2022) Assessment of natural radiation hazards and function of heat production rate in lake sediments of Puliyanthangal Lake surrounding the Ranipet industrial area, Tamil Nadu. J Radioanal Nucl Chem 331:1495–1505. https://doi.org/10.1007/s10967-022-08207-2

    Article  CAS  Google Scholar 

  13. Kobya Y, Taşkın H, Yeşilkanat CM, Çevik U (2015) Evaluation of outdoor gamma dose rate and cancer risk in Artvin Province, Turkey. Hum Ecol Risk Assess 21:2077–2085. https://doi.org/10.1080/10807039.2015.1017876

    Article  CAS  Google Scholar 

  14. Yeşilkanat CM, Kobya Y (2015) Determination and mapping the spatial distribution of radioactivity of natural spring water in the Eastern Black Sea Region by using artificial neural network method. Environ Monit Assess 187: 589. https://doi.org/10.1007/s10661-015-4811-0

    Article  CAS  PubMed  Google Scholar 

  15. Topcuoǧlu S, Kut D, Esen N et al (2001) 137Cs in biota and sediment samples from Turkish coast of the Black Sea, 1997–1998. J Radioanal Nucl Chem 250:381–384. https://doi.org/10.1023/A:1017932604374

    Article  Google Scholar 

  16. Akar B, Şahin B (2016) Diversity and ecology of benthic algae in Karagöl Lake, Karagöl-Sahara National Park (Şavşat, Artvin, Turkey). Turk J Bot 40:645–661. https://doi.org/10.3906/bot-1601-19

    Article  CAS  Google Scholar 

  17. MGM (2017) Observation data of Artvin province Şavşat district climate station.Turkish State Meteorological Service. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=ARTVIN

  18. Öz M, Adanur H, Fidan MS, Komut O (2019) Recreational use of protected areas found in the Eastern Black Sea Region. Gümüşhane University Journal of Social Sciences Institute 10:340–350. https://dergipark.org.tr/en/download/article-file/841209

    Google Scholar 

  19. Grigorescu EL, Sahagia M, Razdolescu AC et al (2002) Standardization of Eu-152. Appl Radiat Isot 56:435–439

    Article  CAS  Google Scholar 

  20. Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40:586–593. https://doi.org/10.1021/ac60259a007

    Article  CAS  Google Scholar 

  21. Beretka J, Mathew P (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  22. Krieger R (1981) Radioactivity of construction materials. Betonw Fert Techn 47:468–473

    CAS  Google Scholar 

  23. UNSCEAR (2000) Exposures from natural radiation sources. United Nations Scientific Committee on the Effects of Atomic Radiation Sources Annex B:140

  24. ICRP (1990) Recommendations of the international commission on radiological protection, vol 21. International Commission on Radiological Protection Publication 60

  25. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  CAS  Google Scholar 

  26. Clark I (1979) Practical geostatistics. Elsevier, London

    Google Scholar 

  27. Diggle P, Riberio PJ (2007) Model-based geostatistics. Springer, London

    Book  Google Scholar 

  28. Krige D (1960) On the departure of ore value distributions from the lognormal model in South African gold mines. J S Afr Inst Min Metall 1:231–244

    Google Scholar 

  29. Baume O, Skøien JO, Heuvelink GBM et al (2011) A geostatistical approach to data harmonization—application to radioactivity exposure data. Int J Appl Earth Obs Geoinf 13:409–419. https://doi.org/10.1016/j.jag.2010.09.002

    Article  Google Scholar 

  30. Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, Hoboken

    Google Scholar 

  31. Sanusi MSM, Ramli AT, Gabdo HT et al (2014) Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia. J Environ Radioact 135:67–74. https://doi.org/10.1016/j.jenvrad.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  32. Kucukomeroglu B, Karadeniz A, Damla N et al (2016) Radiological maps in beach sands along some coastal regions of Turkey. Mar Pollut Bull 112:255–264. https://doi.org/10.1016/j.marpolbul.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  33. Kobya Y, TaşkIn H, Yeşilkanat CM et al (2015) Radioactivity survey and risk assessment study for drinking water in the Artvin Province, Turkey. Water Air Soil Pollut. https://doi.org/10.1007/s11270-015-2344-3

  34. Hiemstra PH, Pebesma EJ, Twenhöfel CJW, Heuvelink GBM (2009) Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput Geosci 35:1711–1721. https://doi.org/10.1016/j.cageo.2008.10.011

    Article  CAS  Google Scholar 

  35. Dowdall M, Gerland S, Lind B (2003) Gamma-emitting natural and anthropogenic radionuclides in the terrestrial environment of Kongsfjord, Svalbard. Sci Total Environ 305:229–240. https://doi.org/10.1016/S0048-9697(02)00478-3

    Article  CAS  PubMed  Google Scholar 

  36. Caro A, Legarda F, Romero L et al (2013) Map on predicted deposition of Cs-137 in Spanish soils from geostatistical analyses. J Environ Radioact 115:53–59. https://doi.org/10.1016/j.jenvrad.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  37. Diab HM, Ramadan AB, Monged MHE (2006) Assessment of natural radioactivity and heavy metals in Burullus Lake, Egypt. Int J Low Radiat 3:273–283. https://doi.org/10.1504/IJLR.2006.012002

    Article  CAS  Google Scholar 

  38. Isinkaye MO, Emelue HU (2015) Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. J Radiat Res Appl Sci 8:459–469. https://doi.org/10.1016/j.jrras.2015.05.001

    Article  Google Scholar 

  39. Langat WK, Omar HN, Ambusso WJ (2012) Gamma ray spectrometric analysis of sediment deposits at the shores of Lake Nakuru, Kenya. J Nat Sci Res 4:34–40

    Google Scholar 

  40. Fares S (2017) Measurements of natural radioactivity level in black sand and sediment samples of the Temsah Lake beach in Suez Canal region in Egypt. J Radiat Res Appl Sci 10:194–203. https://doi.org/10.1016/j.jrras.2017.04.007

    Article  CAS  Google Scholar 

  41. Khater AE, Ebaid YY, El-Mongy SA (2005) Distribution pattern of natural radionuclides in Lake Nasser bottom sediments. Int Congr Ser 1276:405–406

    Article  CAS  Google Scholar 

  42. Kayakökü H, Doğru M (2017) Radioactivity analysis of soil samples taken from the western and northern shores of Lake Van, Turkey. Appl Radiat Isot 128:231–236. https://doi.org/10.1016/j.apradiso.2017.07.019

    Article  CAS  PubMed  Google Scholar 

  43. Özseven A, Akkurt I, Günoğlu K (2020) Determination of some dosimetric parameters in Eğirdir Lake, Isparta, Turkey. Int J Environ Sci Technol 17:1503–1510. https://doi.org/10.1007/s13762-019-02569-z

    Article  CAS  Google Scholar 

  44. Taşkın H, Yeşilkanat CM, Kobya Y, Çevik U (2018) Evaluation and mapping of radionuclides in the terrestrial environment and health hazard due to soil radioactivity in Artvin, Turkey. Arab J Geosci 11:729. https://doi.org/10.1007/s12517-018-4063-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the our driver Ahmet As for help during the sampling. We would like to thank graduate student Didem Kart for assistance in analyses of samples.

Funding

This study was supported by the Recep Tayyip Erdogan University’s Scientific Research Projects Department (Project Code: FBA-2019-1003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Dizman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dizman, S., Akdemir, T., Yeşilkanat, C.M. et al. Radiometric mapping and radiation dose assessments in sediments from Şavşat Black Lake, Turkey. J Radioanal Nucl Chem 331, 2533–2544 (2022). https://doi.org/10.1007/s10967-022-08335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08335-9

Keywords

Navigation