Skip to main content
Log in

Assessment of natural radiation hazards and function of heat production rate in lake sediments of Puliyanthangal Lake surrounding the Ranipet industrial area, Tamil Nadu

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, 238U, 232Th and 40K activity concentration and the associated radiological implications are determined in the lake sediments at Puliyanthangal Lake of Ranipet Industrial area, Tamil Nadu using gamma ray spectrometry. From obtained results, activity concentration of radionuclides increases in the order of 232Th < 238U < 40K in lake and the absorbed dose rate (DR) is varied from 59 to 177 nGyh−1 with an average of 95 nGyh−1, which is slightly higher than the world average value of 84 nGyh−1. The terrestrial heat flow associated with lake sediment also calculated and its correlation with radiological parameters was studied using correlation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Isinkaye MO, Emelue HU (2015) Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, Southeast Nigeria. J Radiat Res Appl Sci 8(3):459–469. https://doi.org/10.1016/j.jrras.2015.05.001

    Article  Google Scholar 

  2. Baba-Ahmed L, Benamar ME, Belamri M, Azbouche A, Benarous S, Benkhalifa A (2018) Natural radioactivity levels in sediments in Algiers Bay using instrumental neutron activation analysis. Radiochim Acta 106(11):939–948. https://doi.org/10.1515/ract-2018-2926

    Article  CAS  Google Scholar 

  3. Eroğlu H, Kabadayi Ö (2013) Natural radioactivity levels in lake sediment samples. Radiat Prot Dosim 156(3):331–335. https://doi.org/10.1093/rpd/nct071

    Article  CAS  Google Scholar 

  4. Jibiri NN, Okeyode IC (2012) Evaluation of radiological hazards in the sediments of Ogun river, South-Western Nigeria. Radiat Phys Chem 81(2):103–112. https://doi.org/10.1016/j.radphyschem.2011.10.002

    Article  CAS  Google Scholar 

  5. Hameed PS, Pillai GS, Satheeshkumar G, Mathiyarasu R (2014) Measurement of gamma radiation from rocks used as building material in Tiruchirappalli district, Tamil Nadu, India. J Radioanal Nucl Chem 300(3):1081–1088. https://doi.org/10.1007/s10967-014-3033-1

    Article  CAS  Google Scholar 

  6. Qureshi AA, Tariq SA, Ud Din K, Manzoor S, Calligaris C, Waheed A (2014) Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Radiat Res Appl Sci 7(4):438–447. https://doi.org/10.1016/j.jrras.2014.07.008

    Article  Google Scholar 

  7. Basith O, Krishnamoorthy R (2021) Primordial radionuclides activity and external radiation hazard index evaluation in Pulicat Lake sediments, south east coast of India. Uttar Pradesh J Zool 42(4):37–43. https://mbiimph.com/index.php/UPJOZ/article/view/1967

  8. Taleb AA, Abbady A, Harb S (2019) Assessment of natural radioactivity level in shore sediment samples from Nasser Lake at Aswan, Egypt. Int J Biomed Eng Tech 6(1):1–11. https://doi.org/10.5121/ijbes.2019.6101

    Article  Google Scholar 

  9. Raman N, Sambandan K (1998) Distribution of VAM fungi in tannery effluent polluted soils of Tamil Nadu, India. Bull Environ Contam Toxicol 60(1):142–150. https://doi.org/10.1007/s001289900602

    Article  CAS  PubMed  Google Scholar 

  10. Govindasamy C, Viji J (2012) Present Status of Maniyampattu and Puliyanthangal Lakes Ranipettai, Tamilnadu, India. World Appl Sci J 16(10):1409–1415. http://www.idosi.org/wasj/wasj16(10)12/12.pdf

  11. District Survey Report, Vellore District, Tamil Nadu (2016) Department of Geology and Mining Govt. of Tamil Nadu 1–98. https://vellore.nic.in/document/district-survey-report-department-of-geology-and-mining/

  12. Jananee B, Rajalakshmi A, Thangam V, Bharath KM, Sathish V (2021) Natural radioactivity in soils of Elephant hills, Tamil Nadu, India. J Radioanal Nucl Chem 329(3):1261–1268. https://doi.org/10.1007/s10967-021-07886-7

    Article  CAS  Google Scholar 

  13. Chandrasekaran A, Ravisankar R, Harikrishnan N, Satapathy KK, Prasad MVR, Kanagasabapathy KV (2015) Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India-Spectroscopical approach. Spectrochim Acta A Mol Biomol Spectrosc 137:589–600. https://doi.org/10.1016/j.saa.2014.08.093

    Article  CAS  PubMed  Google Scholar 

  14. Thangam V, Rajalakshmi A, Chandrasekaran A, Jananee B (2020) Measurement of natural radioactivity in river sediments of Thamirabarani, Tamil Nadu, India using gamma ray spectroscopic technique. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1722815

  15. Ravisankar R, Sivakumar S, Chandrasekaran A, Jebakumar JPP, Vijayalakshmi I, Vijayagopal P, Venkatraman B (2014) Spatial distribution of gamma radioactivity levels and radiological hazard indices in the East Coastal sediments of Tamil Nadu, India with statistical approach. Radiat Phys Chem 103:89–98. https://doi.org/10.1016/j.radphyschem.2014.05.037

    Article  CAS  Google Scholar 

  16. Raghu Y, Chandrasekaran A, Ravisankar R (2020) Statistical analysis of natural radioactivity data of clay samples in Tiruvannamalai, Tamil Nadu, India. Acta Ecol Sin 40(3):254–261. https://doi.org/10.1016/j.chnaes.2019.12.006

    Article  Google Scholar 

  17. UNSCEAR (2000) United Nations Scientific Committee on the Effect of Atomic Radiation. Sources and Effects of Ionizing Radiation. Report to general Assembly, with Scientific Annexes, New York

  18. Beretka J, Matthew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48(1):87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  PubMed  Google Scholar 

  19. Mefleh SH, Manigandan S, Chandrasekaran A, Tamilarasi A, Sathish V (2021) Investigation of natural radioactivity levels in some fertilizer samples used for agriculture purposes in Tiruvannamalai locality, Tamil Nadu, India. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.2014467

  20. Sivakumar S, Chandrasekaran A, Senthilkumar G, Gandhi MS, Ravisankar R (2018) Determination of radioactivity levels and associated hazards of coastal sediment from south east coast of Tamil Nadu with statistical approach. Iran J Sci Technol Trans A Sci 42(2):601–614. https://doi.org/10.1007/s40995-017-0184-2

    Article  Google Scholar 

  21. ICRP (1990) Recommendations of the International Commission on Radiological Protection. ICRP Publication 1, Pergamon Press, Oxford.

  22. Lubin JH, Boice JD (1997) Lung cancer risk from residential radon meta-analysis of eight epidemiology studies. J Nat Cancer Inst 89(1):49–57. https://doi.org/10.1093/jnci/89.1.49

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y, Wu X, Jiang Z, Wang W, Lu J, Lin J, Wang L, Hsia Y (2005) Radioactivity concentrations in soils of the Xiazhuang granite area China. Appl Radiat Isot 63(2):255–259. https://doi.org/10.1016/j.apradiso.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  24. Elsirafy AM, Sabri AM, Hussein AH, Elsayed RA (1996) Environmental Implications of the Laboratory Gamma Ray Spectrometric Measurements Made on the Radioactive Black Sand Deposit of Abu Khashaba Beach, East of Rosetta, Egypt. IAEA, VIC, Vienna 29(4):389–402

    Google Scholar 

  25. Rybach L (1988) Determination of heat production rate. In: handbook of terrestrial heat-flow density determination. Springer, Dordrecht, vol 486, pp 125–142

  26. Dawood YH (2010) Factors controlling uranium and thorium isotopic composition of the streambed sediments of the River Nile, Egypt. JAKU: Earth Sci 21(2):77–103

    Google Scholar 

  27. Veeh HH (1967) Deposition of uranium from the ocean. Earth Planet Sci Lett 3:145–150. https://doi.org/10.1016/0012-821X(67)90026-X

    Article  CAS  Google Scholar 

  28. Kolodny Y, Kaplan IR (1970) Uranium isotopes in sea-floor phosphorites. Geochim Cosmochim Acta 34(1):3–24. https://doi.org/10.1016/0016-7037(70)90148-1

    Article  CAS  Google Scholar 

  29. Mo T, Suttle AD, Sackett WM (1973) Uranium concentrations in marine sediments. Geochim Cosmochim Acta 37(1):35–51. https://doi.org/10.1016/0016-7037(73)90242-1

    Article  CAS  Google Scholar 

  30. NCRP (1987) National Council on Radiation Protection and Measurements. Exposure of the Population in the United States and Canada from Natural Background Radiation, NCRP Report No. 94, Maryland

  31. Yasmin S, Barua BS, Khandaker MU, Kamal M, Rashid MA, Sani SA, Bradley DA (2018) The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: geological characteristics and environmental implication. Results Phys 8:1268–1274. https://doi.org/10.1016/j.rinp.2018.02.013

    Article  Google Scholar 

  32. Dar MA, El Saharty AA (2013) Activity levels of some radionuclides in Mariout and Brullus Lakes, Egypt. Radiat Prot Dosim 157(1):85–92. https://doi.org/10.1093/rpd/nct106

    Article  CAS  Google Scholar 

  33. Fahmi NM, El-Khatib A, Abd El-Salam YM, Naim MA, Shalaby MH, El-Gally MM (2011) Study of the environmental impacts of the natural radioactivity presents in beach sand and Lake Sediment samples Idku, Behara, Egypt. Proceedings of the Tenth Radiation Physics and Protection Conference. 42(33):391–402

  34. Yümün ZÜ, Kam E (2017) Effects of radionuclides on the recent foraminifera from the clastic sediments of the Canakkale Strait-Turkey. J Afr Earth Sci 131:179–182. https://doi.org/10.1016/j.jafrearsci.2017.04.018

    Article  CAS  Google Scholar 

  35. Apaydin G, Koksal OK, Cengiz E, Tirasoglu E, Baltaş H, Karabulut K, Söğüt Ö (2019) Assessment of natural radioactivity and radiological risk of sediment samples in Karacaören II dam Lake, Isparta/Turkey. Fen Bilim Enst Derg 1(1):28–35

  36. Isinkaye MO, Farai IP (2008) Activity concentrations of primordial radionuclides in sediments of surface water dams in southwest Nigeria-a baseline survey. Radioprotection 43(4):533–545. https://doi.org/10.1051/radiopro:2008029

    Article  CAS  Google Scholar 

  37. Kam E, Yumun ZU, Acıkgoz G, Bayrak K (2018) Concentrations of environmental radioactivity in sediment cores from Kulakcayiri Lake. J Turk Chem Soc 5(3):1371–1374. https://doi.org/10.18596/jotcsa.401086

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chandrasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish, V., Chandrasekaran, A., Manigandan, S. et al. Assessment of natural radiation hazards and function of heat production rate in lake sediments of Puliyanthangal Lake surrounding the Ranipet industrial area, Tamil Nadu. J Radioanal Nucl Chem 331, 1495–1505 (2022). https://doi.org/10.1007/s10967-022-08207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08207-2

Keywords

Navigation