Skip to main content
Log in

Determination and mapping the spatial distribution of radioactivity of natural spring water in the Eastern Black Sea Region by using artificial neural network method

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, radiological distribution of gross alpha, gross beta, 226Ra, 232Th, 40K, and 137Cs for a total of 40 natural spring water samples obtained from seven cities of the Eastern Black Sea Region was determined by artificial neural network (ANN) method. In the ANN method employed, the backpropagation algorithm, which estimates the backpropagation of the errors and results, was used. In the structure of ANN, five input parameters (latitude, longitude, altitude, major soil groups, and rainfall) were used for natural radionuclides and four input parameters (latitude, longitude, altitude, and rainfall) were used for artificial radionuclides, respectively. In addition, 75 % of the total data were used as the data of training and 25 % of them were used as test data in order to reveal the structure of each radionuclide. It has been seen that the results obtained explain the radiographic structure of the region very well. Spatial interpolation maps covering the whole region were created for each radionuclide including spots not measured by using these results. It has been determined that artificial neural network method can be used for mapping the spatial distribution of radioactivity with this study, which is conducted for the first time for the Black Sea Region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Amanatiadis, A., Mitsinis, N., Maditinos, D., 2014. A neural network-based approach for user experience assessment. Behaviour a & Information Technology. 1–12. doi:10.1080/0144929X.2014.921728.

  • Bagheri, M., Mirbagheri, S. A., Ehteshami, M., & Bagheri, Z. (2014). Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks. Process Safety and Environmental Protection, 93, 1–13. doi:10.1016/j.psep.2014.04.006.

    Google Scholar 

  • Bonotto, D. M., Bueno, T. O., Tessari, B. W., & Silva, A. (2009). The natural radioactivity in water by gross alpha and beta measurements. Radiation Measurements, 44, 92–101. doi:10.1016/j.radmeas.2008.10.015.

    Article  CAS  Google Scholar 

  • Damla, N., Cevik, U., Karahan, G., Kobya, A. I., Kocak, M., & Isık, U. (2009). Determination of gross α and β activities in waters from Batman, Turkey. Desalination, 244, 208–214. doi:10.1016/j.desal.2008.05.024.

    Article  CAS  Google Scholar 

  • Das, S., Bhattacharya, A., Haldar, S., Ganguly, A., Gu, S., Ting, Y. P., & Chatterjee, P. K. (2015). Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: comparison between artificial neural network and response surface methodology. Sustainable Materials and Technologies. doi:10.1016/j.susmat.2015.01.001.

    Google Scholar 

  • Degerlier, M., & Karahan, G. (2010). Natural radioactivity in various surface waters in Adana, Turkey. Desalination, 261, 126–130. doi:10.1016/j.desal.2010.05.020.

    Article  CAS  Google Scholar 

  • Desideri, D., Roselli, C., Feduzi, L., & Meli, M. A. (2007). Radiological characterization of drinking waters in Central Italy. Microchemical Journal, 87, 13–19. doi:10.1016/j.microc.2007.04.006.

    Article  CAS  Google Scholar 

  • EUR 21595 EN (2005). Automatic mapping algorithms for routine andemergency monitoring data. Report on the spatial interpolation comparison 2004 (SIC2004) exercise. In:Dubois, G.(Ed). Luxembourg.

  • Falamaki, A. (2013). Artificial neural network application for predicting soil distribution coefficient of nickel. Journal of Environmental Radioactivity, 115, 6–12. doi:10.1016/j.jenvrad.2012.06.008.

    Article  CAS  Google Scholar 

  • Farah, J., Henriet, J., Broggio, D., Laurent, R., Fontaine, E., Chebel-Morello, B., Sauget, M., Salomon, M., Makovicka, L., & Franck, D. (2011). Development of a new CBR-based platform for human contamination emergency situations. Radiation Protection Dosimetry, 144, 564–570. doi:10.1093/rpd/ncq440.

    Article  CAS  Google Scholar 

  • Fatima, I., Zaidi, J. H., Arif, M., & Tahir, S. N. A. (2007). Measurement of natural radioactivity in bottled drinking water in Pakistan and consequent dose estimates. Radiation Protection Dosimetry, 123, 234–240. doi:10.1093/rpd/ncl093.

    Article  CAS  Google Scholar 

  • Forte, M., Rusconi, R., Cazzaniga, M. T., & Sgorbati, G. (2007). The measurement of radioactivity in Italian drinking waters. Microchemical Journal, 85, 98–102. doi:10.1016/j.microc.2006.03.004.

    Article  CAS  Google Scholar 

  • Görür, F. K., Keser, R., Dizman, S., & Okumuşoğlu, N. T. (2011). Annual effective dose and concentration levels of gross α and β in various waters from Samsun, Turkey. Desalination, 279, 135–139. doi:10.1016/j.desal.2011.05.071.

    Article  Google Scholar 

  • Günther, F., & Fritsch, S. (2010). Neuralnet: training of neural networks. The R Journal, 2, 30–38.

    Google Scholar 

  • Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993. doi:10.1109/72.329697.

    Article  CAS  Google Scholar 

  • Karabulut, A. (2012). CBS ve UA Bilgi Yönetimi Bölümü Çalışmaları ve Projeksiyonlar (in Turkish http://www.webcitation.org/6WXhCere0), in: 17. ESRI Users Group Meeting Turkey. Ankara.

  • Kiliç, Ö., Belivermiş, M., Topcuoğlu, S., & Çotuk, Y. (2009). Th-232, U-238, K-40, Cs-137 radioactivity concentrations and Cs-137 dose rate in Turkish market tea. Radiation Effects and Defects in Solids, 164, 138–143. doi:10.1080/10420150802681530.

    Article  Google Scholar 

  • Kobya, Y., & Yeşilkanat, C. M. (2014). Investigation of Cs-137 and K-40 activities of natural spring waters of the Eastern Black Sea Region, Turkey. Environmental Earth Sciences. doi:10.1007/s12665-014-3792-6.

    Google Scholar 

  • Kobya, Y., Damla, N., Cevik, U., Kobya, A. I., Taskın, H., & Kemer, B. (2010). Radiological characterization of natural spring waters in the Eastern Black Sea Region, Turkey. Environmental Forensics, 11, 187–192.

    Article  CAS  Google Scholar 

  • Kobya, Y., Taşkın, H., Yeşilkanat, C. M., Varinlioğlu, A., & Korcak, S. (2014). Natural and artificial radioactivity assessment of dam lakes sediments in Çoruh River, Turkey. Journal of Radioanalytical and Nuclear Chemistry. doi:10.1007/s10967-014-3420-7.

    Google Scholar 

  • Negarestani, A., Setayeshi, S., Ghannadi-Maragheh, M., & Akashe, B. (2002). Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction. Journal of Environmental Radioactivity, 62, 225–233. doi:10.1016/S0265-931X(01)00165-5.

    Article  CAS  Google Scholar 

  • Otağ, İ., Otağ, A., Akkoyun, S., Çimen, M., 2015. Estimation of the femur length from its proximal measurements in Anatolian Caucasians by artificial neural networks. Australian Journal of Forensic Sciences. 1–8. doi:10.1080/00450618.2015.1004193.

  • Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 4, 9–13.

    Google Scholar 

  • Quantum GIS Development Team (2014). Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.

  • R Development Core Team (2005). R: A language and environment for statistical computing, reference index version 2.2.1 [WWW Document]. R Foundation Statistical Computing. URL http://www.r-project.org/.

  • Raza, M., Hussain, F. K., & Hussain, O. K. (2012). Neural network-based approach for predicting trust values based on non-uniform input in mobile applications. Computer Journal, 55, 347–378. doi:10.1093/comjnl/bxr104.

    Article  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, 318–362. Cambridge, MA: MIT Press Cambridge.

  • Şen, Z. (2004). Yapay sinir ağları ilkeleri. İstanbul: Su vakfı Publisher (in Turkish. ISBN 975-6455-13-6).

    Google Scholar 

  • Taskin, H., Asliyuksek, H., Bozkurt, A., & Kam, E. (2013). Natural radioactivity in bottled mineral and thermal spring W. Radiation Protection Dosimetry, 157, 575–578.

    Article  CAS  Google Scholar 

  • Vega-Carrillo, H. R., Hernamdez-Davila, V. M., Manzanares-Acuna, E., Gallego, E., & Lorente, A. (2007). Artificial neural networks technology for neutron spectrometry and dosimetry. Radiation Protection Dosimetry, 127, 408–412. doi:10.1093/rpd/ncm084.

    Article  Google Scholar 

  • Zjavka, L. (2014). Short-term power demand forecasting using the differential polynomial neural network. International Journal of Computational Intelligence Systems, 8, 297–306. doi:10.1080/18756891.2015.1001952.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaşar Kobya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeşilkanat, C.M., Kobya, Y. Determination and mapping the spatial distribution of radioactivity of natural spring water in the Eastern Black Sea Region by using artificial neural network method. Environ Monit Assess 187, 589 (2015). https://doi.org/10.1007/s10661-015-4811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4811-0

Keywords

Navigation