Skip to main content
Log in

68Ga-TP1580 as a novel molecular probe for HER2-positive tumor imaging using MicroPET

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

HER2 is an attractive target for the treatment of breast cancer. 99Tcm-labeled HER2-specific binding to the small molecule mimetic peptide B2-S22-AFA shows the potential of detecting HER2 expression in vivo (Zhang in Transl Oncol 10:518–526, 2017). However, the low resolution of SPECT-CT imaging and the inability to quantitatively analyze may partially limit its wide use.68Ga is an excellent PET radionuclide due to availability, nearly quantitative reaction, and short physical half-life. In this study, 68Ga-labeled-NOTA- B2-S22-AFA (hereinafter referred to as 68Ga-TP1580) was applied for PET-CT imaging in HER2 breast cancer xenografts mice. In vitro studies and MicroPET imaging were performed in the SKBR-3 breast cancer model. 68Ga-TP1580 could be produced within 20 min with 93.2 ± 2.1% yield and the radiochemical purity was greater than 95%. The tracer was stable in PBS and human serum for at least 2 h. MicroPET imaging revealed that the SKBR-3 xenografts were visualized and the tumor uptakes were 1.22 ± 0.04, 0.71 ± 0.07, and 0.43 ± 0.04% ID/g at 0.5 h, 1 h, and 2 h.The corresponding tumor-to-blood and tumor-to-muscle ratios were 1.05 ± 0.06, 1.34 ± 0.21, and 1.33 ± 0.57, respectively, and 4.02 ± 1.39, 7.47 ± 2.86, and 5.82 ± 1.98 at 0.5 h, 1 h, and 2 h. No significant decrease in tumor uptake of 68Ga-TP1580 was seen after injection of excess unlabeled TP1580.In conclusion, TP1580 can be labeled by 68Ga with high radiochemical purity (> 95%), good vitro stability (keep consistent radiochemical purity > 95% for more than 2 h).68Ga-TP1580 can combine with target tissue and show some tumor uptake in SKBR-3 xenografts, but not be blocked by NOTA-B2-S22-AFA which indicates poor specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang M-Z, Guan Y-X, Zhong J-X, Chen X-Z (2017) Preparation and identification of HER2 radioactive ligands and imaging study of breast cancer-bearing nude mice. Transl Oncol 10(4):518–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlsson J (2012) Potential for clinical radionuclide-based imaging and therapy of common cancers expressing EGFR-family receptors. Tumor Biol 33(3):653–659

    Article  CAS  Google Scholar 

  3. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  4. Slamon D, Clark G, Wong S, Levin W, Ullrich A, McGuire W (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  5. Hynes NE, Stern DF (1994) The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1198:165–184

    PubMed  Google Scholar 

  6. Rosen PP, Hoda SA, Brogi E, Koerner FC (2014) Rosen’s Breast Pathology, fourthed., Lippincott Williams & Wilkins

  7. Ballard M, Jalikis F, Krings G, Schmidt RA, Chen Y, Rendi MH, Dintzis SM, Jensen KC, West RB, Sibley RK, Troxell ML, Allison KH (2017) ’Non-classical’ HER2 FISH results in breast cancer: a multi-institutional study. Mod Pathol 30:227–235. https://doi.org/10.1038/modpathol.2016.175

    Article  CAS  PubMed  Google Scholar 

  8. Pfitzner BM, Lederer B, Lindner J, Solbach C, Engels K, Rezai M, Dohnal K, Tesch H, Hansmann ML, Salat C, Beer M, Schneeweiss A, Sinn P, Bankfalvi A, Darb-Esfahani S, Minckwitz GV, Sinn BV, Kronenwett R, Weber K, Denkert C, Loibl S (2018) Clinical relevance and concordance of HER2 status in local and central testing-an analysis of 1581 HER2-positive breast carcinomas over 12 years. Mod Pathol 31:607–615. https://doi.org/10.1038/modpathol.2017.171

    Article  CAS  PubMed  Google Scholar 

  9. Munoz DF, Plevritis SK (2018) Estimating breast cancer survival by molecular subtype in the absence of screening and adjuvant treatment. Med Decis Mak 38(1):32S-43S

    Article  Google Scholar 

  10. Wang W, Wang G, Zhang M (2011) Detection of HER-2 gene expression in breast tissue by fluorescence in situ molecular hybridization. Pharmac Forum Magaz 13(7):123–126

    CAS  Google Scholar 

  11. LaBoy C, Siziopikou KP, Rosen L (2021) Clinicopathologic features of unexpectedly HER2 positive breast carcinomas: an institutional experience. Pathology Res Pract. 222:153441

    Article  CAS  Google Scholar 

  12. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145

    Article  CAS  PubMed  Google Scholar 

  13. Perez EA, Cortes J, Gonzalez-Angulo AM, Bartlett JM (2014) HER2 testing: current status and future directions. Cancer Treat Rev 40:276–284. https://doi.org/10.1016/j.ctrv.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  14. Massicano AVF, Marquez-Nostra BV, Lapi SE (2018) Targeting HER2 in nuclear medicine for imaging and therapy. Mol Imaging. https://doi.org/10.1177/1536012117745386

    Article  PubMed  PubMed Central  Google Scholar 

  15. Provost J, Garofalakis A, Sourdon J, Bouda D, Berthon B, Viel T et al (2018) Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging. Nat Biomed Eng 2:85–94. https://doi.org/10.1038/s41551-018-0188-z

    Article  CAS  PubMed  Google Scholar 

  16. Virgolini I, Decristoforo C, Haug A, Fanti S, Uprimny C (2018) Current status of theranostics in prostate cancer. Eur J Nucl Med Mol Imaging 45:471–495. https://doi.org/10.1007/s00259-017-3882-2

    Article  PubMed  Google Scholar 

  17. Jackson IM, Scott PJH, Thompson S (2017) Clinical applications of radiolabeled peptides for PET. Semin Nucl Med 47:493–523. https://doi.org/10.1053/j.semnuclmed.2017.05.007

    Article  PubMed  Google Scholar 

  18. Massicano AVF, Marquez-Nostra BV, Lapi SE (2018) Targeting HER2 in nuclear medicine for imaging and therapy. Mol Imaging 1(7):1–11

    Google Scholar 

  19. Gaykema SB, Schröder CP, Vitfell-Rasmussen J et al (2014) 89Zr-trastuzumab and 89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Cancer Res 20(15):3945–3954

    Article  CAS  PubMed  Google Scholar 

  20. Ontario Clinical Oncology Group (OCOG). ClinicalTrials.gov [Internet]. Hamilton (Canada): McMaster University, Ontario Clinical Oncology Group (Canada); 2016. Imaging with 111 indium (111In)-pertuzumab (PmAb) to predict response to trastuzumab (TmAb) in human epidermal growth factor-2 (HER2) positive metastatic breast cancer (MBC) or locally advanced breast cancer (LABC) (PETRA). NLM Identifier: NCT01805908. https://clinicaltrials.gov/ct2/show/NCT01805908. Accessed 14 March 2017

  21. Ulaner GA, Hyman DM, Ross DS, Corben A, Chandarlapaty S, Goldfarb S et al (2016) Detection of HER2- positive metastases in patients with HER2- negative primary breast cancer using 89Zr- Trastuzumab PET/CT. J Nuclear Med 57:1523–1528. https://doi.org/10.2967/jnumed.115.172031

    Article  CAS  Google Scholar 

  22. Ulaner GA, Hyman DM, Lyashchenko SK, Lewis JS, Carrasquillo JA (2017) 89Zr- Trastuzumab PET/CT for detection of human epidermal growth factor receptor 2- positive metastases in patients with human epidermal growth factor receptor 2- Negative primary breast cancer. Clin Nucl Med 42:912–917. https://doi.org/10.1097/RLU.0000000000001820

    Article  PubMed  PubMed Central  Google Scholar 

  23. Laforest R, Lapi SE, Oyama R, Bose R, Tabchy A, Marquez- Nostra BV et al (2016) 89 Zr trastuzumab: evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2- positive breast cancer. Mol Imaging Biol. https://doi.org/10.1007/s11307-016-0951-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Beylergil V, Morris PG, Smith-Jones PM, et al (2013) Pilot study of 6 8 Ga-DOTA-F (ab′)2-trastuzumab in patients with breast cancer. Nuclear Med Commun 34(12): 1 15 7

  25. Gabriela Kramer-Marek, Dale O Kiesewetter, Lucia artiniova, et al (2008) Elaine Jagoda, Sang Bong Lee, Jacek Capala, [18F]FBEM-ZHER2:342-Affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 35:1008–1018

  26. Xu Y, Bai Z, Huang Q, Pan Y, Pan D, Wang L et al (2017) PET of HER2 expression with a novel 18 FAl labeled affibody. J Cancer 8:1170–1188. https://doi.org/10.7150/jca.18070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu Y, Wang L, Pan D, Yu C, Mi B, Huang Q et al (2019) PET imaging of a 68Ga labeled modified HER2 affibody in breast cancers: from xenografts to patients. Br J Radiol 92:20190425

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Xu Y, Pan D et al (2020) MicroPET and biodistribution of 68Ga⁃labeled human epidermal growth factor receptor 2 binding affibody imaging probe. J Chin J Nucl Med Mol Imaging 40(9)

  29. Henry KE, Ulaner GA, Lewis JS (2017) Human epidermal growth factor receptor 2-targeted PET/single-photon emission computed tomography imaging of breast cancer: noninvasive measurement of a bio marker integral to tumor treatment and prognosis. PET Clin 12(3):269–288. https://doi.org/10.1016/j.cpet.2017.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pereira P, Abma L, Henry KE et al (2018) Imaging of human epidermal growth factor receptors for patient selection and response monitoring from PET imaging and beyond. Cancer Lett 419:139–151. https://doi.org/10.1016/j.canlet.2018.01.052

    Article  CAS  PubMed  Google Scholar 

  31. Berezov A, Chen J, Liu Q, Zhang HT, Greene MI, Murali R (2002) Disabling receptor ensembles with rationally designed interface peptidomimetics. J Biol Chem 277(31):28330–28339

    Article  CAS  PubMed  Google Scholar 

  32. Blom E, Velikyan I, Estrada S, Hall H, Muhammad T, Ding C et al (2012) 68Ga-labeling of RGD peptides and biodistribution. Int J Clin Exp Med 5:165–172

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Banerjee SR, Pomper MG (2013) Clinical applications of gallium-68. Appl Radiat Isot 76:2–13

    Article  CAS  PubMed  Google Scholar 

  34. Velikyan I (2014) Prospective of 68Ga-radiopharmaceutical development. Theranostics 4:47–80

    Article  CAS  Google Scholar 

  35. Pohle K, Notni J, Bussemer J, Kessler H, Schwaiger M, Beer AJ (2012) 68Ga-NODAGA-RGD is a suitable substitute for 18F-Galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nucl Med Biol 39:777–784

    Article  CAS  PubMed  Google Scholar 

  36. Israel I, Richter D, Stritzker J, van Ooschot M, Donat U, Buck K et al (2014) PET imaging with 68Ga NOTA-RGD for prostate cancer: a comparative study with 18F fluorodeoxyglucose and 18F fluoroethylcholine. Curr Cancer Drug Targets 14:371–379

    Article  CAS  PubMed  Google Scholar 

  37. Dijkgraaf GM, Franssen WJ, McBride et al (2012) PET of tumors expressing gastrin-releasing peptide receptor with an 18F-labeled bombesin analog. J Nuclear Med 53(6):947–952

    Article  CAS  Google Scholar 

  38. Bodei L, Kwekkeboom DJ, Kidd M, Modlin IM, Krenning EP (2016) Radiolabeled somatostatin analogue therapy of gastroenteropancreatic cancer. Semin Nucl Med 46(3):225–238

    Article  PubMed  Google Scholar 

  39. Greenwalt I, Zaza N, Das S, Li BD (2020) Precision medicine and targeted therapies in breast cancer Surg. Oncol Clin 29:51–62

    Google Scholar 

  40. Liu T, Song S, Wang X, Hao J (2021) Small-molecule inhibitors of breast cancer-related targets: potential therapeutic agents for breast cancer. Eur J Med Chem 210:112954

    Article  CAS  PubMed  Google Scholar 

  41. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. Cancer J Clin 60:277–300

    Article  Google Scholar 

  42. Wagner CC, Langer O (2011) Approaches using molecular imaging technology—use of PET in clinical microdose studies. Adv Drug Deliv Rev 63:539–546

    Article  CAS  PubMed  Google Scholar 

  43. Price EW, Orvig C (2014) Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev 43(1):260–290

    Article  CAS  PubMed  Google Scholar 

  44. Fani M, Guillaume P, Nicolas DW (2017) Somatostatin receptor antagonists for imaging and therapy. J Nuclear Med 58(9):61S-66S

    Article  CAS  Google Scholar 

  45. Yamei Li, Yanxing Guan etc (2017) Killing effect of 131I-labeled B2-S22-AFA on breast cancer cells with high HER-2 expression. Nuclear Technol 40(12))

  46. Kramer-Marek G, Kiesewetter DO, Martiniova L et al (2008) [18F]FBEM-ZHER2:342-Affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 35:1008–1018

    Article  CAS  PubMed  Google Scholar 

  47. Tolmachev v, Velikyan I, Sandström M, Orlova A (2010) A HER2-binding Affibody molecule labelled with68Ga for PET imaging: direct in vivo comparison with the111In-labelled analogue. 37(7): 1356–1367. https://doi.org/10.1007/s00259-009-1367-7

  48. Xu Y, Wang L, Pan D et al (2019) PET imaging of a 68Ga labeled mod⁃ ified HER2 affibody in breast cancers: from xenografts to patients. Br J Radiol 92(1104):20190425. https://doi.org/10.1259/bjr.20190425

    Article  PubMed  PubMed Central  Google Scholar 

  49. Geng L, Wang Z, Yang X, Li D, Lian W, Xiang Z, Wang W, Bu X, Lai W, Hu Z et al (2015) Structure-based design of peptides with high affinity and specificity to HER2 positive tumors. Theranostics 5(10):1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fani M, Del Pozzo L, Abiraj K et al (2011) PET of somatostatin receptor-positive tumors using64Cu-and 68Ga-somatostatin antagonists: the chelate makes the difference. J Nucl Med 52:1110–1118

    Article  CAS  PubMed  Google Scholar 

  51. Fani M, Braun F, Waser B et al (2012) Unexpected sensitivity of sst2antagonists to N-terminal radiometal modifications. J Nucl Med 53:1481–1489

    Article  CAS  PubMed  Google Scholar 

  52. Wild D, Fani M, Behe M et al (2010) First clinical evaluation of somatostatin receptor antagonist imaging [abstract]. J Nucl Med 51(suppl 2):483

    Google Scholar 

  53. Liu P, Yang R, Pan D (2014) An investigation on the anti-tumor properties of FSH33–53-Lytic. J Radioanal Nucl Chem

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation 91180344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-xing Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Pan, D. & Guan, Yx. 68Ga-TP1580 as a novel molecular probe for HER2-positive tumor imaging using MicroPET. J Radioanal Nucl Chem 331, 1531–1543 (2022). https://doi.org/10.1007/s10967-022-08236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08236-x

Keyword

Navigation