Skip to main content

Advertisement

Log in

Potential for clinical radionuclide-based imaging and therapy of common cancers expressing EGFR-family receptors

  • Research Article
  • Published:
Tumor Biology

Abstract

High expression of epidermal growth factor receptor (EGFR)-family receptors, especially EGFR, HER2, and HER3, makes them interesting for targeted radionuclide-based imaging and therapy of disseminated cancer. The expression in some commonly occurring cancers such as breast, prostate, colorectal, and urinary bladder cancers is summarized. Possible strategies for radionuclide-based imaging and therapy are briefly discussed, especially in relation to the receptor expression in metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sharkey RM, Goldenberg DM. Cancer radioimmunotherapy. Immunotherapy. 2011;3(3):349–70. Review.

    Article  PubMed  Google Scholar 

  2. Carlsson J. EGFR-family expression and implications for targeted radionuclide therapy. In: Stigbrand T, Adams G, Carlsson J, editors. Targeted radionuclide tumor therapy, biological aspects. Berlin: Springer; 2008. p. 25–58. ISBN 978-1-4020-8695-3. Chapter 3.

    Chapter  Google Scholar 

  3. McGill MA, McGlade CJ. Cellular signaling. In: Tannock IF, Hill RP, Bristow RC, Harrington L, editors. The basic science of oncology. New York: McGraw-Hill Medical Publishing Division; 2004. p. 142–66. ISBN-13: 978-0-07-138774-3, Chapter 8.

    Google Scholar 

  4. Pecorino L. Molecular biology of cancer. Mechanisms, targets and therapeutics. Oxford: Oxford University Press; 2005. ISBN 0-19-926472-4

  5. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147–57. Review.

    Article  PubMed  CAS  Google Scholar 

  6. Garrett CR, Eng C. Cetuximab in the treatment of patients with colorectal cancer. Expert Opin Biol Ther. 2011;11(49):937. Review.

    Article  PubMed  CAS  Google Scholar 

  7. Xu Y, Zhang Y, Ma S. EGFR inhibitors with concurrent thoracic radiation therapy for locally advanced non-small cell lung cancer. Lung Cancer. 2011;73(3):249–55.

    Article  PubMed  Google Scholar 

  8. Ahn ER, Vogel CL. Dual HER2-targeted approaches in HER2-positive breast cancer. Breast Cancer Res Treat. 2011 Sep 29. doi:10.1007/s10549-011-1781-y

  9. Mukai H. Treatment strategy for HER2-positive breast cancer. Int J Clin Oncol. 2010;15(4):335–40. Review.

    Article  PubMed  CAS  Google Scholar 

  10. Chang HR. Trastuzumab-based neoadjuvant therapy in patients with HER2-positive breast cancer. Cancer. 2010;116(12):2856–67. Review.

    Article  PubMed  CAS  Google Scholar 

  11. Avraham R, Yarden Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol. 2011;12(2):104–17. Review.

    Article  PubMed  CAS  Google Scholar 

  12. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16.

    Article  PubMed  CAS  Google Scholar 

  13. Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol. 2007;19(2):124–34. Review.

    Article  PubMed  CAS  Google Scholar 

  14. Kedrin D, Wyckoff J, Boimel PJ, Coniglio SJ, Hynes NE, Arteaga CL, et al. ERBB1 and ERBB2 have distinct functions in tumor cell invasion and intravasation. Clin Cancer Res. 2009;15(11):3733–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54.

    Article  PubMed  CAS  Google Scholar 

  16. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12(18):5268–72. Review.

    Article  PubMed  CAS  Google Scholar 

  17. Gusterson B, Cowley G, Smith JA, Ozanne B. Cellular localisation of human epidermal growth factor receptor. Cell Biol Int Rep. 1984;8:649–58.

    Article  PubMed  CAS  Google Scholar 

  18. Damjanov I, Mildner B, Knowles BB. Immunohistochemical localization of the epidermal growth factor receptor in normal human tissues. Lab Invest. 1986;55:588–92.

    PubMed  CAS  Google Scholar 

  19. Natali PG, Nicotra MR, Bigotti A, Venturo I, Slamon DJ, Fendly BM, et al. Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer. 1990;45:457–61.

    Article  PubMed  CAS  Google Scholar 

  20. Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5:953–62.

    PubMed  CAS  Google Scholar 

  21. Wei Q, Chen L, Sheng L, Nordgren H, Wester K, Carlsson J. EGFR, HER2 and HER3 expression in esophageal primary tumours and corresponding metastases. Int J Oncol. 2007;31:493–9.

    PubMed  Google Scholar 

  22. Kountourakis P, Pavlakis K, Psyrri A, Rontogianni D, Xiros N, Patsouris E, et al. Prognostic significance of HER3 and HER4 protein expression in colorectal adenocarcinomas. BMC Cancer. 2006;6:46.

    Article  PubMed  Google Scholar 

  23. Gullick WJ. The c-erbB3/HER3 receptor in human cancer. Cancer Surv. 1996;27:339–49.

    PubMed  CAS  Google Scholar 

  24. Houssami N, Macaskill P, Balleine RL, Bilous M, Pegram MD. HER2 discordance between primary breast cancer and its paired metastasis: tumor biology or test artefact? Insights through meta-analysis. Breast Cancer Res Treat. 2011;129(3):659–74.

    Article  PubMed  CAS  Google Scholar 

  25. Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, et al. HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer. 2004;90:2344–8.

    PubMed  CAS  Google Scholar 

  26. Baselga J, Perez EA, Pienkowski T, Bell R. Adjuvant trastuzumab: a milestone in the treatment of HER-2-positive early breast cancer. Oncologist. 2006;11(1):4–12.

    Article  PubMed  CAS  Google Scholar 

  27. Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26(25):3637–43.

    Article  PubMed  CAS  Google Scholar 

  28. LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res. 2011;17(20):6437–47.

    Article  PubMed  CAS  Google Scholar 

  29. Tovey SM, Witton CJ, Bartlett JM, Stanton PD, Reeves JR, Cooke TG. Outcome and human epidermal growth factor receptor (HER)1-4 status in invasive breast carcinomas with proliferation indices evaluated by bromodeoxyuridine labelling. Breast Cancer Res. 2004;6(3):R246–51.

    Article  PubMed  CAS  Google Scholar 

  30. Milenic DE, Garmestani K, Brady ED, Albert PS, Abdulla A, Flynn J, et al. Potentiation of high-LET radiation by gemcitabine: targeting HER2 with trastuzumab to treat disseminated peritoneal disease. Clin Cancer Res. 2007;13(6):1926–35.

    Article  PubMed  CAS  Google Scholar 

  31. Persson M, Gedda L, Lundqvist H, Tolmachev V, Nordgren H, Malmstrom PU, et al. [177Lu]pertuzumab: experimental therapy of HER-2-expressing xenografts. Cancer Res. 2007;67(1):326–31.

    Article  PubMed  CAS  Google Scholar 

  32. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2 positive microxenografts using a 177Lu-labeled HER2-specific affibody molecule. Cancer Res. 2007;67(6):2773–82.

    Article  PubMed  CAS  Google Scholar 

  33. Kim SJ, Uehara H, Karashima T, Shepherd DL, Killion JJ, Fidler IJ. Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin Cancer Res. 2003;9(3):1200–10.

    PubMed  CAS  Google Scholar 

  34. Liu HL, Gandour-Edwards R, Lara Jr PN, de Vere White R, LaSalle JM. Detection of low level HER-2/neu gene amplification in prostate cancer by fluorescence in situ hybridization. Cancer J. 2001;7(5):395–403.

    PubMed  CAS  Google Scholar 

  35. Hernes E, Fossa SD, Berner A, Otnes B, Nesland JM. Expression of the epidermal growth factor receptor family in prostate carcinoma before and during androgen-independence. Br J Cancer. 2004;90(2):449–54.

    Article  PubMed  CAS  Google Scholar 

  36. Solit DB, Rosen N. Targeting HER2 in prostate cancer: where to next? J Clin Oncol. 2007;25(3):241–3.

    Article  PubMed  CAS  Google Scholar 

  37. Beaven AW, Goldberg RM. Adjuvant therapy for colorectal cancer: yesterday, today, and tomorrow. Oncology (Williston Park). 2006;20(5):461–9. Review.

    Google Scholar 

  38. Wei Q, Shui Y, Zheng S, Wester K, Nordgren H, Nygren P, et al. EGFR, HER2 and HER3 expression in primary colorectal carcinomas and corresponding metastases: Implications for targeted radionuclide therapy. Oncol Rep. 2011;25(1):3–11.

    PubMed  CAS  Google Scholar 

  39. Knosel T, Petersen S, Schwabe H, Schluns K, Stein U, Schlag PM, et al. Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases. Virchows Arch. 2002;440(2):187–94.

    Article  PubMed  Google Scholar 

  40. Lee JC, Wang ST, Chow NH, Yang HB. Investigation of the prognostic value of coexpressed erbB family members for the survival of colorectal cancer patients after curative surgery. Eur J Cancer. 2002;38(8):1065–71.

    Article  PubMed  CAS  Google Scholar 

  41. Gardmark T, Wester K, De la Torre M, Carlsson J, Malmstrom PU. Analysis of HER2 expression in primary urinary bladder carcinoma and corresponding metastases. BJU Int. 2005;95(7):982–6.

    Article  PubMed  CAS  Google Scholar 

  42. Wester K, Sjostrom A, de la Torre M, Carlsson J, Malmstrom PU. HER-2–a possible target for therapy of metastatic urinary bladder carcinoma. Acta Oncol. 2002;41:282–8.

    Article  PubMed  Google Scholar 

  43. Rotterud R, Nesland JM, Berner A, Fossa SD. Expression of the epidermal growth factor receptor family in normal and malignant urothelium. BJU Int. 2005;95(9):1344–50.

    Article  PubMed  CAS  Google Scholar 

  44. Memon AA, Sorensen BS, Meldgaard P, Fokdal L, Thykjaer T, Nexo E. The relation between survival and expression of HER1 and HER2 depends on the expression of HER3 and HER4: a study in bladder cancer patients. Br J Cancer. 2006;94:1703–9.

    PubMed  CAS  Google Scholar 

  45. Friess H, Fukuda A, Tang WH, Eichenberger A, Furlan N, Zimmermann A, et al. Concomitant analysis of the epidermal growth factor receptor family in esophageal cancer: overexpression of epidermal growth factor receptor mRNA but not of c-erbB-2 and c erbB-3. World J Surg. 1999;23:1010–8.

    Article  PubMed  CAS  Google Scholar 

  46. Akamatsu M, Matsumoto T, Oka K, Yamasaki S, Sonoue H, Kajiyama Y, et al. c-erbB-2 oncoprotein expression related to chemoradioresistance in esophageal squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2003;57:1323–7.

    Article  PubMed  CAS  Google Scholar 

  47. Wei Q, Sheng L, Shui Y, Hu Q, Nordgren H, Carlsson J. EGFR, HER2, and HER3 expression in laryngeal primary tumors and corresponding metastases. Ann Surg Oncol. 2008;15(4):1193–201.

    Article  PubMed  Google Scholar 

  48. Frejd YF. Novel alternative scaffolds and their potential use for tumor targeted radionuclide therapy. In: Stigbrand T, Adams G, Carlsson J, editors. Targeted radionuclide tumor therapy, biological aspects. Berlin: Springer; 2008. p. 89–116. ISBN 978-1-4020-8695-3. Chapter 6.

    Chapter  Google Scholar 

  49. Govindan SV, Goldenberg DM. New antibody conjugates in cancer therapy. Scientific World Journal. 2010;10:2070–89. Review.

    Article  PubMed  CAS  Google Scholar 

  50. Stigbrand T, Carlsson J, Adams GP. Developmental trends in targeted radionuclide therapy—biological aspects. In: Stigbrand T, Adams G, Carlsson J, editors. Targeted radionuclide tumor therapy, biological aspects. Berlin: Springer; 2008. p. 387–97. ISBN 978-1-4020-8695-3. Chapter 21.

    Chapter  Google Scholar 

  51. Reilly RM. The radiochemistry of monoclonal antibodies and peptides. In: Rielly RM, editor. Monoclonal antibody and peptide-targeted radiotherapy of cancer. New York: Wiley; 2010. p. 39–100. ISBN 978-0-470-24372-5. Chapter 2.

    Chapter  Google Scholar 

  52. Thomadsen B, Erwin W, Mourtada F. The physics and radiobiology of targeted radionuclide therapy. In: Speer TW, editor. targeted radionuclide therapy. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 71–87. ISBN 978-0-7817-9693-4. Chapter 6.

    Google Scholar 

Download references

Acknowledgments

Financial support from the Swedish Cancer Society, grant 0980-B06-19XBC, and Vinnova, grant 2004-02159, for research related to the content of this article is acknowledged.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörgen Carlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlsson, J. Potential for clinical radionuclide-based imaging and therapy of common cancers expressing EGFR-family receptors. Tumor Biol. 33, 653–659 (2012). https://doi.org/10.1007/s13277-011-0307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0307-x

Keywords

Navigation