Skip to main content
Log in

Inorganic ion exchangers for strontium removal from radioactive waste : a review

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

90Sr is the most hazardous radioactive isotope of strontium that is produced during the normal operation of nuclear reactors. It can also spread to the environment due to fallout from nuclear accidents and nuclear weapon testing. The removal of hazardous radionuclides and the safe management of radioactive waste are of vital necessity. Inorganic ion exchangers stand out with their thermal, chemical and radiation resistance. They also show remarkable selectivity for specific cations. This review focuses on the removal of 90Sr by natural and synthetic inorganic ion exchangers, viz. zeolites, clay minerals, hydroxyapatite, insoluble acid salts, hydrous oxides and metal sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. PRIS-Power Reactor Information System, The Database on Nuclear Power Reactors. https://pris.iaea.org/PRIS/home.aspx. Accessed 10 Oct 2021

  2. PRIS-Power Reactor Information System, Trend in Electricity Supplied. https://pris.iaea.org/PRIS/WorldStatistics/WorldTrendinElectricalProduction.aspx. Accessed 10 Oct 2021

  3. Taylor R (2015) Reprocessing and Recycling of Spent Nuclear Fuel. Elsevier, UK

    Google Scholar 

  4. Baisden PA, Atkins-Duffi CE (2011) Radioactive waste management. In: Vertes A, Nagy S, Klencsar Z, Lovas RG, Rosch F (eds) Handbook of nuclear chemistry. Springer, USA

    Google Scholar 

  5. Marinin DV, Brown GN (2000) Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Manage 20:545–553

    Article  CAS  Google Scholar 

  6. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M (2015) Strontium(II) adsorption on Sb(III)/Sb2O5. Chem Eng J 267:245–252

    Article  CAS  Google Scholar 

  7. Koarai K, Kino Y, Oka T, Takahashi A, Suzuki T, Shimizu Y, Chiba M, Osaka K, Sasaki K, Urushihara Y, Fukuda T, Isogai E, Yamashiro H, Fukumoto M, Sekine T, Shinoda H (2020) Incorporation and accumulation of Strontium-90 in the hard tissue of animals and their relationship with Strontium-90 pollution in the environment. In: Fukumoto M (ed) Low-dose radiation effects on animals and ecosystems. Springer, Singapore

    Google Scholar 

  8. Radionuclide Basics USEPA Strontium-90. https://www.epa.gov/radiation/radionuclide-basics-strontium-90. Accessed 10 Oct 2021

  9. EPA US (1980) EMSL. Method 905.0: Radioactive Strontium in Drinking Water, Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA/600/4/80/032

  10. ISO-International Organization for Standartization. ISO/DIS 13160(en) Water quality-Strontium 90 and strontium 89-Test methods using liquid scintillation counting or proportional counting. https://www.iso.org/standard/78205.html. Accessed 10 Oct 2021

  11. Radiological, Aspects Guidelines for Drinking-Water Quality. https://www.who.int/water_sanitation_health/dwq/GDW9rev1and2.pdf. Accessed 10 Oct 2021

  12. Rahman ROA, Ibrahium HA, Hung YT (2011) Liquid radio-active wastes treatment: a review. Water 3:551–565

    Article  Google Scholar 

  13. Yang A, Yang P, Huang CP (2017) Effect of Mg(II) on the removal of uranium from low radioactive wastewater by flocculation using polyacrylamide. J Hazard Toxic Radioact Waste 21:4017006

    Article  Google Scholar 

  14. Jia F, Li J, Wang J, Sun Y (2017) Removal of strontium ions from simulated radioactive wastewater by vacuum membrane distillation. Ann Nucl Energy 103:363–368

    Article  CAS  Google Scholar 

  15. Ambashta RD, Sillanpää MET (2012) Membrane purification in radioactive waste management: a short review. J Environ Radioact 105:76–84

    Article  CAS  PubMed  Google Scholar 

  16. Luo X, Wang J (2014) Study on radioactive wastewater treatment by precipitation and membrane separation. Appl Mech Mater 490–491:972–975

    Article  Google Scholar 

  17. Luo X, Zhang G, Wang X, Gu P (2013) Research on a pellet coprecipitation micro-filtration process for the treatment of liquid waste containing strontium. J Radioanal Nucl Chem 298:931–939

    Article  CAS  Google Scholar 

  18. Xu C, Wang J, Chen J (2012) Solvent extraction of strontium and cesium: A review of recent progress. Solvent Extr Ion Exch 30:623–650

    Article  CAS  Google Scholar 

  19. Kumar JR, Kim J-S, Lee J-Y, Yoon H-S (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Rev 40:77–125

    Article  CAS  Google Scholar 

  20. Popa K, Pavel CC (2012) Radioactive wastewaters purification using titanosilicates materials: state of the art and perspectives. Desalination 293:78–86

    Article  CAS  Google Scholar 

  21. Pavel CC, Popa K (2014) Investigations on the ion exchange process of Cs+ and Sr2+ cations by ETS materials. Chem Eng J 245:288–294

    Article  CAS  Google Scholar 

  22. Fang X-H, Fang F, Lu C-H, Zheng L (2017) Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites. Nucl Eng Technol 49:556–561

    Article  Google Scholar 

  23. Krishna MVB, Rao S, Arunachalam J, Murali M, Kumar S, Manchanda V (2004) Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent. Sep Purif Technol 38:149–161

    Article  Google Scholar 

  24. Solbra S, Allison N, Waite S, Mikhalovsky SV, Bortun AI, Bortun LN, Clearfield A (2001) Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4⸱ nH2O (M = H, Na). Environ Sci Technol 35:626–629

    Article  CAS  PubMed  Google Scholar 

  25. Awual MR, Suzuki S, Taguchi T, Shiwaku H, Okamoto Y, Yaita T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242:127–135

    Article  CAS  Google Scholar 

  26. Dulanská S, Remenec B, Mátel Ľ, Galanda D, Molnár A (2011) Pre-concentration and determination of 90Sr in radioactive wastes using solid phase extraction techniques. J Radioanal Nucl Chem 288:705–708

    Article  Google Scholar 

  27. Grahek Ž, Dulanská S, Karanović G, Coha I, Tucaković I, Nodilo M, Mátel Ľ (2018) Comparison of different methodologies for the 90Sr determination in environmental samples. J Environ Radioact 181:18–31

    Article  CAS  PubMed  Google Scholar 

  28. Möller T (2002) Selective crystalline inorganic materials as ion exchangers in the treatment of nuclear waste solutions. Doctoral Thesis, University of Helsinki, Finland

  29. Vijayan S, Belikov K, Drapailo A (2011) Inorganic sorbents for radiostrontium removal from waste solutions: selectivity and role of calixarenes. Technical Report, AECL-CW-121600-CONF-001

  30. Clearfield A (2000) Inorganic ion exchangers, past, present, and future. Solvent Extr Ion Exch 18:655–678

    Article  CAS  Google Scholar 

  31. Lopes CB, Lito PF, Otero M, Lin Z, Rocha J, Silva CM, Pereira E, Duarte AC (2008) Mercury removal with titanosilicate ETS-4: batch experiments and modelling. Microporous Mesoporous Mater 115:98–105

    Article  CAS  Google Scholar 

  32. Figueiredo BR, Cardoso SP, Portugal I, Rocha J, Silva CM (2018) Inorganic ion exchangers for cesium removal from radioactive wastewater. Sep Purif Rev 47(4):306–336

    Article  CAS  Google Scholar 

  33. Sylvester P (2000) Strontium From Nuclear Wastes: Ion Exchange. Academic Press, USA

    Google Scholar 

  34. Smiciklas I, Coha I, Jovic M, Nodilo M, Sljivic-Ivanovic M, Smiljanic S, Grahek Z (2021) Efficient separation of strontium radionuclides from high-salinity wastewater by zeolite 4A synthesized from Bayer process liquids. Sci Rep 11:1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jimenez-Reyes M, Almazan-Sanchez PT, Solache-Rios M (2021) Radioactive waste treatments by using zeolites. A short review. J Environ Radioact 233:106610

    Article  CAS  PubMed  Google Scholar 

  36. Camacho LM, Deng S, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: Effects of pH and initial feed concentration. J Hazard Mater 175:393–398

    Article  CAS  PubMed  Google Scholar 

  37. Olmez Aytas S, Akyil S, Eral M (2004) Adsorption and thermodynamic behavior of uranium on natural zeolite. J Radioanal Nucl Chem 260:119–125

    Article  Google Scholar 

  38. Barkat M, Nibou D, Amokrane S, Chegrouche S, Mellah A (2015) Uranium (VI) adsorption on synthesized 4A and P1 zeolites: Equilibrium, kinetic, and thermodynamic studies. C R Chimie 18:261–269

    Article  CAS  Google Scholar 

  39. Nemes Z, Nagy N, Konya J (2005) Kinetics of strontium ion adsorption on natural clay samples. J Radioanal Nucl Chem 266(2):289–293

    Article  CAS  Google Scholar 

  40. Zabulonov Y, Kadoshnikov V, Zadvernyuk H, Melnychenko T, Molochko V (2021) Effect of the surface hydration of clay minerals on the adsorption of cesium and strontium from dilute solutions. Adsorption 27:41–48

    Article  CAS  Google Scholar 

  41. Ning Z, Ishiguro M, Koopal LK, Sato T, Kashiwagi J (2017) Strontium adsorption and penetration in kaolinite at low Sr2+ concentration. Soil Sci Plant Nutr 63(1):13–17

    Article  Google Scholar 

  42. Tran TN, Kim J, Park J-S, Chung Y, Han J, Oh S, Kang S (2021) Novel hydroxyapatite beads for the adsorption of radionuclides from decommissioned nuclear power plant sites. Appl Sci 11:1746

    Article  CAS  Google Scholar 

  43. Skwarek E (2015) Adsorption of Cs+ at the hydroxyapatite/aqueous electrolyte interface. Adsorp Sci Technol 33:575–580

    Article  CAS  Google Scholar 

  44. Feng Y, Ma B, Guo X, Sun H, Zhang Y, Gong H (2019) Preparation of amino-modified hydroxyapatite and its uranium adsorption properties. J Radioanal Nucl Chem 319:437–446

    Article  CAS  Google Scholar 

  45. Krestou A, Xenidis A, Panias D (2004) Mechanism of aqueous uranium(VI) uptake by hydroxyapatite. Minerals Eng 17(3):373–381

    Article  CAS  Google Scholar 

  46. Lehto J, Clearfield A (1987) The ion exchange of strontium on sodium titanate Na4Ti9O20-xH2O. J Radioanal Nucl Chem Lett 118(1):1–13

    Article  CAS  Google Scholar 

  47. Li H, Huang Y, Liu J, Duan H (2021) Hydrothermally synthesized titanate nanomaterials for the removal of heavy metals and radionuclides from water: A review. Chemosphere 282:131046

    Article  CAS  PubMed  Google Scholar 

  48. Taylor-Pashow KML, Missimer DM, Jurgensen A, Hobbs DT (2011) Characterization of modified monosodium titanate - an improved sorbent for strontium and actinide separations. Sep Sci Technol 46:1087–1097

    Article  CAS  Google Scholar 

  49. Jozdani SMB, Nilchi A, Abdolmohammadi S (2019) Disposal of cesium ion from wastewater using biocompatible titanate nanotube. Desalin Water Treat 138:219–229

    Article  CAS  Google Scholar 

  50. Guevar C, Hertz A, Brackx E, Barre Y, Grandjean A (2017) Mechanisms of strontium removal by a Ba-titanate material for the wastewater treatment. J Env Chem Eng 5:4948–4957

    Article  CAS  Google Scholar 

  51. Anthony RG, Dosch RG, Gu D, Philip CV (1994) Use of silicotitanates for removing cesium and strontium from defense waste. Ind Eng Chem Res 33:2702–2705

    Article  CAS  Google Scholar 

  52. Miller JE, Brown NE (1997) Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications. Technical report, SAND97-0771

  53. Clearfield A, Medvedev DG, Kerlegon S, Bosser T, Burns JD, Jackson M (2012) Rates of exchange of Cs+ and Sr2+ for poorly crystalline sodium titanium silicate (CST) in nuclear waste systems. Solvent Extr Ion Exch 30(3):229–243

    Article  CAS  Google Scholar 

  54. Mu W, Yu Q, Zhang R, Li X, Hu R, He Y, Wei H, Jian Y, YAng Y (2017) Controlled fabrication of flower-like α-zirconium phosphate for the efficient removal of radioactive strontium from acidic nuclear wastewater. J Mater Chem A 5:24388–24395

    Article  CAS  Google Scholar 

  55. Ivanets A, Radkevich·A, Shashkova I, Kitikova N, Zarubo A, Venhlinskaya E (2021) Study of dynamic adsorption and desorption kinetics of cesium, strontium, cobalt radionuclides on granular phosphate adsorbent. J Radioanal Nucl Chem 327:1291–1298

    Article  CAS  Google Scholar 

  56. Tang M, Chen J, Wang P, Wang C, Ao Y (2018) Highly efficient adsorption of uranium(VI) from aqueous solution by a novel adsorbent: titanium phosphate nanotubes. Environ Sci: Nano 5:2304–2314

    CAS  Google Scholar 

  57. Korneikov RI, Ivanenko VI (2020) Extraction of cesium and strontium cations from solutions by titanium(IV) phosphate-based ion exchangers. Inorg Mater 56(5):528–532

    Article  Google Scholar 

  58. Hamed MM, Holiel M, Ahmed IM (2016) Sorption behavior of cesium, cobalt and europium radionuclides onto hydroxyl magnesium silicate. Radiochim Acta 104(12):873–890

    Article  CAS  Google Scholar 

  59. Zhuravlev I (2020) Titanium silicates precipitated on the rice husk biochar as adsorbents for the extraction of cesium and strontium radioisotope ions. Colloids Interfaces 3(1):36

    Article  Google Scholar 

  60. Shabana EI, El-Dessouky MI (2002) Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. J Radioanal Nucl Chem 253(2):281–284

    Article  CAS  Google Scholar 

  61. Vanketasan KA, Panner Selvam G, Vasudeva Rao PR (2000) Sorption of strontium on hydrous zirconium oxide. Sep Sci Technol 35(14):2343–2357

    Article  Google Scholar 

  62. Mishra SP, Singh VK (1995) Radiotracer technique in adsorption study XIII. Adsorption of barium and strontium ions on chromium(IV) oxide powder. Appl Radiat Isot 46(9):847–853

    Article  CAS  Google Scholar 

  63. Trivedi P, Axe L (1999) A comparison of strontium sorption to hydrous aluminum, iron, and manganese oxides. J Colloid Interf Sci 218:554–563

    Article  CAS  Google Scholar 

  64. Ahmadi SJ, Akbari N, Shiri-Yekta Z, Mashhadizadeh MH, Pourmatin A (2014) Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2–ZrO2 composite: a new inorganic ion exchanger. J Radioanal Nucl Chem 299:1701–1707

    Article  CAS  Google Scholar 

  65. İnan S, Altaş Y (2010) Adsorption of strontium from acidic waste solution by Mn–Zr mixed hydrous oxide prepared by co-precipitation. Sep Sci Technol 45(2):269–276

    Article  Google Scholar 

  66. Park Y, Shin WS, Reddy S, Shin S-J, Choi S-J (2010) Use of nano crystalline silicotitanate for the removal of Cs, Co, Sr from low-level liquid radioactive waste. J Nanoelectron Optoelectron 5:238–242

    Article  CAS  Google Scholar 

  67. Lehto J, Bordkin L, Harjula R, Tusa E (1999) Separation of radioactive strontium from alkaline nuclear waste solutions with the highly effective ion exchanger SrTreat. Nucl Technol 127:81–87

    Article  CAS  Google Scholar 

  68. Manos MJ, Kanatzidis MG (2016) Metal sulfide ion exchangers: superior sorbents for the capture of toxic and nuclear waste-related metal ions. Chem Sci 7:4804–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krol M (2020) Natural vs. synthetic zeolites. Crystals 10:622

    Article  CAS  Google Scholar 

  70. Osmanlioglu AE (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J Hazard Mater 137(1):332–335

    Article  CAS  PubMed  Google Scholar 

  71. Abdollahi T, Towfighi J, Rezaei-Vahidian H (2020) Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste. Environ Technol Innov 17:100592

    Article  Google Scholar 

  72. Sterba JH, Sperrer H, Wallenko F, Welch JM (2018) Adsorption characteristics of a clinoptilolite-rich zeolite compound for Sr and Cs. J Radioanal Nucl Chem 318:267–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rajec P, Macasek F, Feder M, Misaelides P, Samayova E (1998) Sorption of caesium and strontium on clinoptilolite- and mordenite-containing sedimentary rocks. J Radioanal Nucl Chem 229:49–55

    Article  CAS  Google Scholar 

  74. Faghihian H, Marageh MG, Kazemian H (1999) The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater. Appl Radiat Isot 50(4):655–660

    Article  CAS  PubMed  Google Scholar 

  75. Mimura H, Akiba K (1993) Adsorption behavior of cesium and strontium on synthetic zeolite P. J Nucl Sci Technol 30(5):436–443

    Article  CAS  Google Scholar 

  76. Çiçek E, Cojocaru C, Zakrzewska-Trznadel G, Harasimowicz M, Miskiewicz A (2012) Response surface methodology for the modelling of 85Sr adsorption on zeolite 3A and pumice. Environ Technol 33(1):51–59

    Article  PubMed  Google Scholar 

  77. Abdel-Rahman RO, Ibrahim HA, Hanafy M, Abdel-Monem NM (2010) Assessment of synthetic zeolite NaA-X as sorbing barrier for strontium in a radioactive disposal facility. Chem Eng J 157:100–112

    Article  CAS  Google Scholar 

  78. Levenets VV, Lonin AY, Omelnik OP, Shchur AO (2016) Comparison the sorption properties of clinoptilolite and synthetic zeolite during sorption strontium from the water solutions in static conditions: sorption and quantitative determination of strontium by the method PIXE. J Environ Chem Eng 4(4):3961–3966

    Article  CAS  Google Scholar 

  79. Munthali MW, Johan E, Aono H, Matsue N (2015) Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. J Asian Ceram Soc 3(3):245–250

    Article  Google Scholar 

  80. Valcke E, Engels B, Cremers A (1997) The use of zeolites as amendments in radiocaesium- and radiostrontium-contaminated soils: a soil-chemical approach. Part II: Sr-Ca exchange in clinoptilolite, mordenite, and zeolite A. Zeolites 18(2–3):212–217

    Article  CAS  Google Scholar 

  81. Savva SN (2015) New materials for strontium removal from nuclear waste streams. Doctoral Thesis, University of Birmingham, England

  82. Gregor M, Cicel B (1969) Bentonite and Its Use, 1st edn. SAV, Bratislava

    Google Scholar 

  83. Bors J, Dultz S, Riebe B (2000) Organophilic bentonites as adsorbents for radionuclides. I. Adsorption of anionic and cationic fission products. Appl Clay Sci 16(1–2):1–13

    Article  CAS  Google Scholar 

  84. Hurel C, Marmier N, Bourg AC, Fromage F (2008) Sorption of Cs and Rb on purified and crude MX-80 bentonite in various electrolytes. J Radioanal Nucl Chem 279(1):113–119

    Article  Google Scholar 

  85. Hebbar RS, Isloor AM, Ismail AF (2014) Preparation and evaluation of heavy metal rejection properties of polyetherimide/porous activated bentonite clay nanocomposite membrane. RSC Adv 4:47240–47248

    Article  CAS  Google Scholar 

  86. Galambos M, Kufcakova J, Rajec P (2009) Sorption of strontium on Slovak bentonites. J Radioanal Nucl Chem 281:347–357

    Article  CAS  Google Scholar 

  87. Nuruzzaman MD, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483

    Article  CAS  PubMed  Google Scholar 

  88. Ostovaritalab M-A, Hayati-Ashtiani M (2019) Investigation of Cs(I) and Sr(II) removal using nanoporous bentonite. Particul Sci Technol 37(7):881–889

    Article  CAS  Google Scholar 

  89. Marinovic SR, Ajdukovic MJ, Jovic-Jovicic NP, Mudrinic TM, Nedic-Vasiljevic BM, Bankovic PT, Milutinovic-Nikolic AD (2017) Adsorption of strontium on different sodium-enriched bentonites. J Serb Chem Soc 82(4):449–463

    Article  CAS  Google Scholar 

  90. Bilgin B, Atun G, Keçeli G (2001) Adsorption of strontium on illite. J Radioanal Nucl Chem 250:323–328

    Article  CAS  Google Scholar 

  91. Keçeli G (2015) Adsorption kinetics and equilibria of strontium onto kaolinite. Sep Sci Technol 50(1):72–80

    Article  Google Scholar 

  92. Akar D, Shahwan T, Eroglu AE (2005) Kinetic and thermodynamic investigations of strontium ions retention by natural kaolinite and clinoptilolite minerals. Radiochim Acta 93:477–485

    Article  CAS  Google Scholar 

  93. Rosskopfová O, Galambos M, Rajec P (2011) Study of sorption processes of strontium on the synthetic hydroxyapatite. J Radioanal Nucl Chem 287:715–722

    Article  Google Scholar 

  94. Lazic S, Vukovic Z (1991) Ion exchange of strontium on synthetic hydroxyapatite. J Radioanal Nucl Chem 149:161–168

    Article  CAS  Google Scholar 

  95. ChemTube3D, Zeolite-Clinoptilolite. https://www.chemtube3d.com/ss-z-clinoptilolite/ Accessed 30 November 2021

  96. Nishiyama Y, Hanafusa T, Yamashita J, Yamamoto Y, Ono T (2016) Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite. J Radioanal Nucl Chem 307:1279–1285

    Article  CAS  PubMed  Google Scholar 

  97. Handley-Sidhu S, Mullan TK, Grail Q, Albadarneh M, Ohnuki T, Macaskie LE (2016) Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite. Sci Rep 6:23361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Behrens EA, Sylvester P, Clearfield A (1998) Assessment of a sodium nonatitanate and pharmacosiderite.-type ion exchangers for strontium and cesium removal from DOE waste simulants. J Environ Sci Technol 32:101–107

    Article  CAS  Google Scholar 

  99. Yates SF, Sylvester P (2001) Sodium nonatitanate: A highly selective inorganic ion exchanger for strontium. Sep Sci Technol 36:867–883

    Article  CAS  Google Scholar 

  100. Amesh P, Suneesh AS, Venkatesan KA, Maheswari RU, Vijayalakshmi S (2020) Preparation and ion exchange studies of cesium and strontium on sodium iron titanate. Sep Purif Technol 238:116393

    Article  CAS  Google Scholar 

  101. Ryu J, Kim S, Hong H-J, Hong J, Kim M, Ryu T, Park I-S, Chung K-S, Jang JS, Kim B-G (2016) Strontium ion (Sr2+) separation from seawater by hydrothermally structured titanate nanotubes: removal vs. recovery. Chem Eng J 304:503–510

    Article  CAS  Google Scholar 

  102. Nenoff TM, Miller JE, Thoma SG, Trudell DE (1996) Highly selective inorganic crystalline ion exchange material for Sr2+ in acidic solutions. Environ Sci Technol 30:3630–3633

    Article  CAS  Google Scholar 

  103. Poojary DM, Cahill RA, Clearfield A (1994) Synthesis, crystal structures, and ion-exchange properties of a novel porous titanosilicate. Chem Mater 6:2364–2368

    Article  CAS  Google Scholar 

  104. Pavel CC, Walter M, Pöml P, Bouexiere D, Popa K (2011) Contrasting immobilization behavior of Cs+ and Sr2+ cations in a titanosilicate matrix. J Mater Chem 21:3831–3837

    Article  CAS  Google Scholar 

  105. Chitra S, Shanmugamani AG, Sudha R, Kalavathi S, Paul B (2017) Selective removal of cesium and strontium by crystalline silicotitanates. J Radioanal Nucl Chem 312:507–515

    Article  CAS  Google Scholar 

  106. Oleksiienko O, Levchuk I, Sitarz M, Meleshevych S, Strelko V, Sillanpää M (2015) Removal of strontium (Sr2+) from aqueous solutions with titanosilicates obtained by the sol-gel method. J Colloid Interf Sci 438:159–168

    Article  CAS  Google Scholar 

  107. Naushad M (2009) Inorganic and composite ion exchange materials and their applications. Ion Exch Lett 2:1–14

    CAS  Google Scholar 

  108. Möller T, Harjula R, Pillinger M, Dyer A, Newton J, Tusa E, Amin S, Webb M, Araya A (2001) Uptake of 85Sr, 134Cs and 57Co by antimony silicates doped with Ti4+, Nb5+, Mo6+ and W6+. J Mater Chem 11:1526–1532

    Article  Google Scholar 

  109. Zhang L, Wei J, Zhao X, Li F, Jiang F (2015) Adsorption characteristics of strontium on synthesized antimony silicate. Chem Eng J 277:378–387

    Article  CAS  Google Scholar 

  110. Solbra S, Allison N, Waite S, Mikhalovsky SV (2001) Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4‚nH2O (M = H, Na). Environ Sci Technol 35:626–629

    Article  CAS  PubMed  Google Scholar 

  111. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Competitive adsorption of strontium and cobalt onto tin antimonate. Chem Eng J 285:679–689

    Article  CAS  Google Scholar 

  112. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate. Chem Eng J 302:733–743

    Article  CAS  Google Scholar 

  113. Sonar NL, Pardeshi V, De V, Shukla R, Valsala TP, Kulkarni Y, Manoj N, Pillai CS, Tyagi AK, Raj K, Manchanda VK (2011) Evaluation of metal antimonate compounds for the removal of radiostrontium from radioactive liquid waste: characterization and sorption behavior. Sep Sci Technol 46:1776–1787

    Article  CAS  Google Scholar 

  114. El-Latif MMA, Elkady MF (2011) Synthesis, characterization and evaluation of nano-zirconium vanadate ion exchanger by using three different preparation techniques. Mater Res Bull 46(1):105–118

    Article  Google Scholar 

  115. Mishra SP, Tiwary D (1999) Ion exchangers in radioactive waste management. Part XI. Removal of barium and strontium ions from aqueous solutions by hydrous ferric oxide. Appl Radiat Isot 51(4):359–366

    Article  CAS  PubMed  Google Scholar 

  116. İnan S, Tel H, Altaş Y (2006) Sorption studies of strontium on hydrous zirconium dioxide. J Radioanal Nucl Chem 267:615–621

    Article  Google Scholar 

  117. Venkatesan KA, Panner Selvam G, Vasudeva Rao PR (2000) Sorption of strontium on hydrous zirconium oxide. Sep Sci Technol 35(14):2343–2357

    Article  CAS  Google Scholar 

  118. Dyer A, Pillinger M, Newton J, Harjula R, Möller T, Amin S (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chem Mater 12:3798–3804

    Article  CAS  Google Scholar 

  119. Logunov MV, Skobtsov AS, Soldatov BV, Pazdnikov AP, Voroshilov YA, Rovny SI (2004) Research and application of inorganic selective sorbents at Mayak PA. C R Chimie 7:1185–1190

    Article  CAS  Google Scholar 

  120. Mayer SF, Rodrigues JE, Sobrados I, Gainza J, Fernandez-Diaz MT, Marini C, Asensio MC, Alonso JA (2021) Synergy of diffraction and spectroscopic techniques to unveil the crystal structure of antimonic acid. Sci Rep 11:17763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li X, Mu W, Xie X, Liu B, Tang H, Zhou G, Wei H, Jian Y, Lou S (2014) Strontium adsorption on tantalum-doped hexagonal tungsten oxide. J Hazard Mater 264:386–394

    Article  CAS  PubMed  Google Scholar 

  122. Gürboğa G, Tel H (2005) Preparation of TiO2-SiO2 mixed gel spheres for strontium adsorption. J Hazard Mater 120(1–3):135–142

    Article  PubMed  Google Scholar 

  123. Ahmadi SJ, Akbari N, Shiri-Yekta Z, Mashhadizadeh MH, Hosseinpour M (2015) Removal of strontium ions from nuclear waste using synthesized MnO2-ZrO2 nano-composite by hydrothermal method in supercritical condition. Korean J Chem Eng 32(3):478–485

    Article  CAS  Google Scholar 

  124. Qi X, Du K, Feng M, Gao Y, Huang X, Kanatzidis MG (2017) The layered A2Sn3S7·(A=organic cation) as efficient ion-exchanger for rare earth element recovery. J Am Chem Soc 139:4314–4317

    Article  CAS  PubMed  Google Scholar 

  125. Li J, Wang X, Yuan B, Fu M (2014) Layered chalcogenide for Cu2+ removal by ion exchange from wastewater. J Mol Liq 200:205–212

    Article  CAS  Google Scholar 

  126. Li J, Wang X, Yuan B, Fu M, Cui H (2014) Robust removal of heavy metals from water by intercalation chalcogenide [CH3NH3]2xMnxSn3–xS6∙0.5H2O. Appl Surf Sci 320:112–119

    Article  CAS  Google Scholar 

  127. Manos MJ, Kanatzidis MG (2009) Sequestration of heavy metals from water with layered metal sulfides. Chem-Eur J 15:4779–4784

    Article  CAS  PubMed  Google Scholar 

  128. Yang H, Luo M, Luo L, Wang H, Hu D, Lin J, Wang X, Wang Y, Wang S, Bu X (2016) Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy. Chem Mater 28:8774–8780

    Article  CAS  Google Scholar 

  129. Neeway JJ, Asmussen RM, Lawter AR, Bowden ME, Lukens WW, Sarma D, Riley BJ, Kanatzidis MG, Qafoku NP (2016) Removal of TcO4 from representative nuclear waste streams with layered potassium metal sulfide materials. Chem Mater 28(11):3976–3983

    Article  CAS  Google Scholar 

  130. Sengupta P, Dudwadkar NL, Vishwanadh B, Pulhani V, Rao R, Tripathi SC, Dey GK (2014) Uptake of hazardous radionuclides with layered chalcogenide for environmental protection. J Hazard Mater 266:94–101

    Article  CAS  PubMed  Google Scholar 

  131. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134:16441–16446

    Article  CAS  PubMed  Google Scholar 

  132. Manos MJ, Ding N, Kanatzidis MG (2008) Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal. Proc Natl Acad Sci USA 105:3696–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mertz JL, Fard ZH, Malliakas CD, Manos MJ, Kanatzidis MG (2013) Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3–xS6 (x=0.5-1) (KMS-2) relevant to nuclear waste remediation. Chem Mater 25:2116–2127

    Article  CAS  Google Scholar 

  134. Sarma D, Malliakas CD, Subrahmanyam KS, Islama SM, Kanatzidis MG (2016) K2xSn4–xS8–x (x=0.65-1): a new metal sulfide for rapid and selective removal of Cs+, Sr2+ and UO22+ ions. Chem Sci 7:1121–1132

    Article  CAS  PubMed  Google Scholar 

  135. Qi X, Du K, Feng M, Li J, Du C, Zhang B, Huang X (2015) A two-dimensionally microporous thiostannate with superior Cs+ and Sr2+ ion-exchange property. J Mater Chem A 3:5665–5673

    Article  CAS  Google Scholar 

  136. Manos MJ, Iyer RG, Quarez E, Liao JH, Kanatzidis MG (2005) {Sn[Zn4Sn4S17]}6–: a robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10– clusters with ion-exchange properties. Angew Chem Int Edit 44:3552–3555

    Article  CAS  Google Scholar 

  137. Manos MJ, Chrissafis K, Kanatzidis MG (2006) Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn [Zn4Sn4S17]. J Am Chem Soc 128:8875–8883

    Article  CAS  PubMed  Google Scholar 

  138. Zhang M, Gu P, Zhang Z, Liu J, Dong L, Zhang G (2018) Effective, rapid and selective adsorption of radioactive Sr2+ from aqueous solution by a novel metal sulfide adsorbent. Chem Eng J 351:668–677

    Article  CAS  Google Scholar 

  139. Zhang M, Gu P, Yan S, Dong L, Zhang G (2020) Na/Zn/Sn/S (NaZTS): Quaternary metal sulfide nanosheets for efficient adsorption of radioactive strontium ions. Chem Eng J 379:122227

    Article  CAS  Google Scholar 

  140. Liang C, Jia M, Wang X, Du Z, Men J, Ding H (2019) Preparation of potassium niobium sulfide and its selective adsorption properties for Sr2+ and Co2+. J Radioanal Nucl Chem 322:377–387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman İnan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İnan, S. Inorganic ion exchangers for strontium removal from radioactive waste : a review. J Radioanal Nucl Chem 331, 1137–1154 (2022). https://doi.org/10.1007/s10967-022-08206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08206-3

Keywords

Navigation