Skip to main content
Log in

Effective and rapid adsorption of uranium via synergy of complexation and cation-π interaction

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel indole-based aerogel (HTPRA) containing carboxyl groups was prepared for separation of uranium from aqueous solution. The adsorption was rapid, strongly dependent on pH, attaining a plateau at pH 4–7.5 and independent of ionic strength. The maximum adsorption capacity of HTPRA for uranium was evaluated to be 899.9 mg g−1. HTPRA exhibited satisfactory performance in actual water samples. Furthermore, the resulting HTPRA could be recovered at least five times without marked deterioration in uptake capacity. The synergistic effect of complexation and cation-π interaction between HTPRA and uranium was responsible for the unexpected adsorption capacity of uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tang L, Ren S, Zhang T, Wei X, Li M, Yin X, Wei S (2021) UO22+-imprinted thermoresponsive hydrogel for accumulation of uranium from seawater. Chem Eng J 425:130589. https://doi.org/10.1016/j.cej.2021.130589

    Article  CAS  Google Scholar 

  2. Feng L, Wang H, Feng T, Yan B, Yu Q, Zhang J, Guo Z, Yuan Y, Ma C, Liu T, Wang N (2021) In-situ synthesis of uranyl-imprinted nanocage for selective uranium recovery from seawater. Angew Chem Int Edit. https://doi.org/10.1002/anie.202101015

    Article  Google Scholar 

  3. Ling L, Zhang WX (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137(8):2788–2791. https://doi.org/10.1021/ja510488r

    Article  CAS  PubMed  Google Scholar 

  4. Feng ML, Sarma D, Qi XH, Du KZ, Huang XY, Kanatzidis MG (2016) Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J Am Chem Soc 138(38):12578–12585. https://doi.org/10.1021/jacs.6b07351

    Article  CAS  PubMed  Google Scholar 

  5. Chaudhary M, Singh L, Rekha P, Srivastava VC, Mohanty P (2019) Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine. Chem Eng J 378:122236. https://doi.org/10.1016/j.cej.2019.122236

    Article  CAS  Google Scholar 

  6. Dutta RK, Shaida MA, Singla K, Das D (2019) Highly efficient adsorptive removal of uranyl ions by a novel graphene oxide reduced by adenosine 5′-monophosphate (RGO-AMP). J Mater Chem A 7(2):664–678. https://doi.org/10.1039/c8ta09746a

    Article  CAS  Google Scholar 

  7. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168(2–3):1053–1058. https://doi.org/10.1016/j.jhazmat.2009.02.157

    Article  CAS  PubMed  Google Scholar 

  8. Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2(3):1621–1634. https://doi.org/10.1016/j.jece.2014.06.007

    Article  CAS  Google Scholar 

  9. Venu-Babu P, Chaudhuri G, Thilagaraj WR (2017) A new approach using polyvinylidene fluoride immobilised calf-intestinal alkaline phosphatase for uranium bioprecipitation. Int J Environ Sci Te 15(3):599–606. https://doi.org/10.1007/s13762-017-1421-0

    Article  CAS  Google Scholar 

  10. Kallithrakas-Kontos NG, Xarchoulakos DC, Boultadaki P, Potiriadis C, Kehagia K (2018) Selective membrane complexation and uranium isotopes analysis in tap water and seawater samples. Anal Chem 90(7):4611–4615. https://doi.org/10.1021/acs.analchem.7b05115

    Article  CAS  PubMed  Google Scholar 

  11. Yan B, Ma C, Gao J, Yuan Y, Wang N (2020) An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv Mater 32(10):1906615. https://doi.org/10.1002/adma.201906615

    Article  CAS  Google Scholar 

  12. Li JQ, Gong LL, Feng XF, Zhang L, Wu HQ, Yan CS, Xiong YY, Gao HY, Luo F (2017) Direct extraction of U(VI) from alkaline solution and seawater via anion exchange by metal-organic framework. Chem Eng J 316:154–159. https://doi.org/10.1016/j.cej.2017.01.046

    Article  CAS  Google Scholar 

  13. Li P, Zhun B, Wang X, Liao P, Wang G, Wang L, Guo Y, Zhang W (2017) Highly efficient interception and precipitation of uranium(VI) from aqueous solution by iron-electrocoagulation combined with cooperative chelation by organic ligands. Environ Sci Technol 51(24):14368–14378. https://doi.org/10.1021/acs.est.7b05288

    Article  CAS  PubMed  Google Scholar 

  14. Amphlett JTM, Ogden MD, Foster RI, Syna N, Soldenhoff KH, Sharrad CA (2018) The effect of contaminants on the application of polyamine functionalised ion exchange resins for uranium extraction from sulfate based mining process waters. Chem Eng J 354:633–640. https://doi.org/10.1016/j.cej.2018.07.209

    Article  CAS  Google Scholar 

  15. Watkins JK, Butt DP, Jaques BJ (2019) Microstructural degradation of UN and UN-UO2 composites in hydrothermal oxidation conditions. J Nucl Mater 518:30–40. https://doi.org/10.1016/j.jnucmat.2019.02.027

    Article  CAS  Google Scholar 

  16. Xu Y, Zhang H, Liu Q, Liu J, Chen R, Yu J, Zhu J, Li R, Wang J (2021) Surface hybridization of π-conjugate structure cyclized polyacrylonitrile and radial microsphere shaped TiO2 for reducing U(VI) to U(IV). J Hazar Mater 416:125812. https://doi.org/10.1016/j.jhazmat.2021.125812

    Article  CAS  Google Scholar 

  17. Li P, Wang J, Wang Y, Liang J, He B, Pan D, Fan Q, Wang X (2019) Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365:231–241. https://doi.org/10.1016/j.cej.2019.02.013

    Article  CAS  Google Scholar 

  18. Zhao M, Cui Z, Pan D, Fan F, Tang J, Hu Y, Xu Y, Zhang P, Li P, Kong XY, Wu W (2021) An efficient uranium adsorption magnetic platform based on amidoxime-functionalized flower-like Fe3O4@TiO2 core-shell Microspheres. ACS Appl Mater Interfaces 13(15):17931–17939. https://doi.org/10.1021/acsami.1c00556

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Li Y, Zhang Y, Zhang Z, Li Y, Li W (2021) Nanocellulose aerogel for highly efficient adsorption of uranium (VI) from aqueous solution. Carbohydr Polym 267:118233. https://doi.org/10.1016/j.carbpol.2021.118233

    Article  CAS  PubMed  Google Scholar 

  20. Chen M, Liu T, Zhang X, Zhang R, Tang S, Yuan Y, Xie Z, Liu Y, Wang H, Fedorovich KV, Wang N (2021) Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv Func Mater 31(22):2100106. https://doi.org/10.1002/adfm.202100106

    Article  CAS  Google Scholar 

  21. Xu M, Han X, Hua D (2017) Polyoxime-functionalized magnetic nanoparticles for uranium adsorption with high selectivity over vanadium. J Mater Chem A 5(24):12278–12284. https://doi.org/10.1039/c7ta02684f

    Article  CAS  Google Scholar 

  22. Xiao F, Cheng Y, Zhou P, Chen S, Wang X, He P, Nie X, Dong F (2021) Fabrication of novel carboxyl and amidoxime groups modified luffa fiber for highly efficient removal of uranium(VI) from uranium mine water. J Environ Chem Eng 9(4):105681. https://doi.org/10.1016/j.jece.2021.105681

    Article  CAS  Google Scholar 

  23. Liu X, Wu J, Zhang S, Ding C, Sheng G, Alsaedi A, Hayat T, Li J, Song Y (2019) Amidoxime-functionalized hollow carbon spheres for efficient removal of uranium from wastewater. ACS Sustain Chem Eng 7(12):10800–10807. https://doi.org/10.1021/acssuschemeng.9b01616

    Article  CAS  Google Scholar 

  24. Fuxiang S, Jingxiang Z, Tao D, Na W, Zhuoyue W, Zhen Z, Bin L, Qiangqiang Z (2021) Three-dimensional-printed hierarchical reduced graphene oxide/ethylenediamine filter with super-high uranyl ions with recycling capacity and unique selectivity. Carbon 182:1–10. https://doi.org/10.1016/j.carbon.2021.05.042

    Article  CAS  Google Scholar 

  25. Cheng J, Leng Y, Gu R, Yang G, Wang Y, Tuo X (2021) Adsorption of uranium(VI) from groundwater by amino-functionalized clay. J Radioanal Nucl Ch 327(3):1365–1373. https://doi.org/10.1007/s10967-021-07617-y

    Article  CAS  Google Scholar 

  26. Aydin F, Yilmaz E, Olmez E, Soylak M (2020) Cu2O-CuO ball like/multiwalled carbon nanotube hybrid for fast and effective ultrasound-assisted solid phase extraction of uranium at ultra-trace level prior to ICP-MS detection. Talanta 207:120295. https://doi.org/10.1016/j.talanta.2019.120295

    Article  CAS  PubMed  Google Scholar 

  27. Xu M, Han X, Wang T, Li S, Hua D (2018) Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes. J Mater Chem A 6(28):13894–13900. https://doi.org/10.1039/c8ta02875c

    Article  CAS  Google Scholar 

  28. Yuan D, Wang Y, Qian Y, Liu Y, Feng G, Huang B, Zhao X (2017) Highly selective adsorption of uranium in strong HNO3 media achieved on a phosphonic acid functionalized nanoporous polymer. J Mater Chem A 5(43):22735–22742. https://doi.org/10.1039/c7ta07320h

    Article  CAS  Google Scholar 

  29. ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23(26):2887–2903. https://doi.org/10.1002/adma.201100283

    Article  CAS  PubMed  Google Scholar 

  30. Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118. https://doi.org/10.1016/j.cej.2016.04.098

    Article  CAS  Google Scholar 

  31. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117(23):13935–14013. https://doi.org/10.1021/acs.chemrev.7b00355

    Article  CAS  PubMed  Google Scholar 

  32. Xiong J, Hu S, Liu Y, Yu J, Yu H, Xie L, Wen J, Wang X (2017) Polypropylene modified with amidoxime/carboxyl groups in separating uranium(VI) from thorium(IV) in aqueous solutions. ACS Sustain Chem Eng 5(2):1924–1930. https://doi.org/10.1021/acssuschemeng.6b02663

    Article  CAS  Google Scholar 

  33. Yang L, Chang G, Wang D (2017) High and selective carbon dioxide capture in nitrogen-containing aerogels via synergistic effects of electrostatic in-plane and dispersive π-π-stacking interactions. ACS Appl Mater Interfaces 9(18):15213–15218. https://doi.org/10.1021/acsami.7b02077

    Article  CAS  PubMed  Google Scholar 

  34. Chang G, Shang Z, Yu T, Yang L (2016) Rational design of a novel indole-based microporous organic polymer: enhanced carbon dioxide uptake via local dipole-π interactions. J Mater Chem A 4(7):2517–2523. https://doi.org/10.1039/c5ta08705h

    Article  CAS  Google Scholar 

  35. Yang P, Yang L, Wang Y, Song L, Yang J, Chang G (2019) An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation-π interactions. J Mater Chem A 7(2):531–539. https://doi.org/10.1039/c8ta07326k

    Article  CAS  Google Scholar 

  36. Rouhi M, Lakouraj MM, Tashakkorian H, Hasantabar V (2019) Novel carbon based bioactive nanocomposites of aniline/indole copolymer for removal of cationic dyes from aqueous solution: kinetics and isotherms. New J Chem 43(5):2400–2410. https://doi.org/10.1039/c8nj02924e

    Article  CAS  Google Scholar 

  37. Wang Y, Zhang L, Yang L, Ma Y, Chang G (2019) A recyclable indole-based polymer for trinitrotoluene adsorption via the synergistic effect of dipole-π and donor-acceptor interactions. Polym Chem 10(34):4632–4636. https://doi.org/10.1039/c9py00820a

    Article  CAS  Google Scholar 

  38. Wang Y, Zhang L, Yang L, Chang G (2020) An indole-based smart aerogel for simultaneous visual detection and removal of trinitrotoluene in water via synergistic effect of dipole-π and donor-acceptor interactions. Chem Eng J 384:123358. https://doi.org/10.1016/j.cej.2019.123358

    Article  CAS  Google Scholar 

  39. Juszczak LJ, Eisenberg AS (2017) The color of cation-π interactions: subtleties of amine-tryptophan interaction energetics allow for radical-like visible absorbance and fluorescence. J Am Chem Soc 139(24):8302–8311. https://doi.org/10.1021/jacs.7b03442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bai J, Ma X, Yan H, Zhu J, Wang K, Wang J (2020) A novel functional porous organic polymer for the removal of uranium from wastewater. Microporous Mesopor Mater 306:110441. https://doi.org/10.1016/j.micromeso.2020.110441

    Article  CAS  Google Scholar 

  41. Qian Y, Yuan Y, Wang H, Liu H, Zhang J, Shi S, Guo Z, Wang N (2018) Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J Mater Chem A 6(48):24676–24685. https://doi.org/10.1039/c8ta09486a

    Article  CAS  Google Scholar 

  42. Liu Z, Ou T, Su M, Peng H, Song G, Kong L, Chen D (2021) U(VI) sequestration by Al-rich minerals: mechanism on phase dependence and the influence of natural organic matter. Chem Eng J 415:128858. https://doi.org/10.1016/j.cej.2021.128858

    Article  CAS  Google Scholar 

  43. Liao J, Liu P, Xie Y, Zhang Y (2021) Metal oxide aerogels: preparation and application for the uranium removal from aqueous solution. Sci Total Environ 768:144212. https://doi.org/10.1016/j.scitotenv.2020.144212

    Article  CAS  PubMed  Google Scholar 

  44. Pan D, Fan Q, Fan F, Tang Y, Zhang Y, Wu W (2017) Removal of uranium contaminant from aqueous solution by chitosan@attapulgite composite. Sep Purif Technol 177:86–93. https://doi.org/10.1016/j.seppur.2016.12.026

    Article  CAS  Google Scholar 

  45. Bai Z, Liu Q, Zhang H, Liu J, Yu J, Wang J (2020) A novel 3D reticular anti-fouling bio-adsorbent for uranium extraction from seawater: polyethylenimine and guanidyl functionalized hemp fibers. Chem Eng J 382:122555. https://doi.org/10.1016/j.cej.2019.122555

    Article  CAS  Google Scholar 

  46. Guo X, Yang H, Liu Q, Liu J, Chen R, Zhang H, Yu J, Zhang M, Li R, Wang J (2020) A chitosan-graphene oxide/ZIF foam with anti-biofouling ability for uranium recovery from seawater. Chem Eng J 382:122850. https://doi.org/10.1016/j.cej.2019.122850

    Article  CAS  Google Scholar 

  47. El Hayek E, Torres C, Rodriguez-Freire L, Blake JM, De Vore CL, Brearley AJ, Spilde MN, Cabaniss S, Ali AS, Cerrato JM (2018) Effect of calcium on the bioavailability of dissolved uranium(VI) in plant roots under circumneutral pH. Environ Sci Technol 52(22):13089–13098. https://doi.org/10.1021/acs.est.8b02724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elwakeel KZ, Atia AA, Guibal E (2014) Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin. Bioresour Technol 160:107–114. https://doi.org/10.1016/j.biortech.2014.01.037

    Article  CAS  PubMed  Google Scholar 

  49. Zhuang S, Cheng R, Kang M, Wang J (2018) Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads. J Clean Prod 188:655–661. https://doi.org/10.1016/j.jclepro.2018.04.047

    Article  CAS  Google Scholar 

  50. Liu W, Zhang L, Chen F, Wang H, Wang Q, Liang K (2020) Efficiency and mechanism of adsorption of low-concentration uranium from water by a new chitosan/aluminum sludge composite aerogel. Dalton Trans 49(10):3209–3221. https://doi.org/10.1039/c9dt04670d

    Article  CAS  PubMed  Google Scholar 

  51. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  52. El-Maghrabi HH, Younes AA, Salem AR, Rabie K, El-Shereafy ES (2019) Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): preparation, characterization and adsorption optimization. J Hazard Mater 378:120703. https://doi.org/10.1016/j.jhazmat.2019.05.096

    Article  CAS  PubMed  Google Scholar 

  53. Cai Y, Chen L, Yang S, Xu L, Qin H, Liu Z, Chen L, Wang X, Wang S (2019) Rational synthesis of novel phosphorylated chitosan-carboxymethyl cellulose composite for highly effective decontamination of U(VI). ACS Sustain Chem Eng 7(5):5393–5403. https://doi.org/10.1021/acssuschemeng.8b06416

    Article  CAS  Google Scholar 

  54. Huang T, Shao Y, Zhang Q, Deng Y, Liang Z, Guo F, Li P, Wang Y (2019) Chitosan-cross-linked graphene oxide/carboxymethyl cellulose aerogel globules with high structure stability in liquid and extremely high adsorption ability. ACS Sustain Chem Eng 7(9):8775–8788. https://doi.org/10.1021/acssuschemeng.9b00691

    Article  CAS  Google Scholar 

  55. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  56. He J, Sun F, Han F, Gu J, Ou M, Xu W, Xu X (2018) Preparation of a novel polyacrylic acid and chitosan interpenetrating network hydrogel for removal of U(VI) from aqueous solutions. RSC Adv 8(23):12684–12691. https://doi.org/10.1039/c7ra13065a

    Article  Google Scholar 

  57. Sun Y, Kang Y, Zhong W, Liu Y, Dai Y (2020) A simple phosphorylation modification of hydrothermally cross-linked chitosan for selective and efficient removal of U(VI). J Solid State Chem 292:121731. https://doi.org/10.1016/j.jssc.2020.121731

    Article  CAS  Google Scholar 

  58. Li W, Liu Q, Liu J, Zhang H, Li R, Li Z, Jing X, Wang J (2017) Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine. Appl Surf Sci 403:378–388. https://doi.org/10.1016/j.apsusc.2017.01.104

    Article  CAS  Google Scholar 

  59. Ahmad M, Chen J, Yang K, Shah T, Naik M, Zhang Q, Zhang B (2021) Preparation of amidoxime modified porous organic polymer flowers for selective uranium recovery from seawater. Chem Eng J 418:129370. https://doi.org/10.1016/j.cej.2021.129370

    Article  CAS  Google Scholar 

  60. Zhuang S, Wang J (2020) Poly amidoxime functionalized carbon nanotube as an efficient adsorbent for removal of uranium from aqueous solution. J Mol Liq 319:114288. https://doi.org/10.1016/j.molliq.2020.114288

    Article  CAS  Google Scholar 

  61. Zhou Y, Li Y, Liu D, Wang X, Liu D, Xu L (2020) Synthesis of the inorganic-organic hybrid of two-dimensional polydopamine-functionalized titanate nanosheets and its efficient extraction of U(VI) from aqueous solution. Colloid Surfaces A 607:125422. https://doi.org/10.1016/j.colsurfa.2020.125422

    Article  CAS  Google Scholar 

  62. Zhang Q, Zhang S, Zhao J, Wei P, Wang C, Liu P, Zhao X, Zeng K, Wu F, Liu Z (2021) Unexpected ultrafast and highly efficient removal of uranium from aqueous solutions by a phosphonic acid and amine functionalized polymer adsorbent. New J Chem 45(24):10777–10787. https://doi.org/10.1039/d1nj00218j

    Article  CAS  Google Scholar 

  63. Zhang Y, Liao J, Zhu W (2021) Uranium uptake from wastewater by the novel MnxTi1-xOy composite materials: performance and mechanism. Environ Pollut 284:117392. https://doi.org/10.1016/j.envpol.2021.117392

    Article  CAS  PubMed  Google Scholar 

  64. Li K, Lei Y, Liao J, Zhang Y (2021) A facile synthesis of graphene oxide/locust bean gum hybrid aerogel for water purification. Carbohydr Polym 254:117318. https://doi.org/10.1016/j.carbpol.2020.117318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Start-up Project of Mianyang Teachers’ College (QD2015A001, QD2021A15 and MYSY2018T004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bowei Chen or Yong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, X., Xie, Y. et al. Effective and rapid adsorption of uranium via synergy of complexation and cation-π interaction. J Radioanal Nucl Chem 331, 1115–1126 (2022). https://doi.org/10.1007/s10967-021-08179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08179-9

Keywords

Navigation