Skip to main content
Log in

Adsorption of uranium onto amidoxime-group mesoporous biomass carbon: kinetics, isotherm and thermodynamics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Biomass is one of the most important carbon raw due to high availability and low cost. In this study mesoporous biomass carbon adsorbent derived from Luffa chemically modified with task-specific amidoxime group (Luffa-AO for short) was prepared. Luffa-AO was verified using SEM, TEM, FT-IR, N2 adsorption–desorption isotherm and X-ray photoelectron spectroscopy (XPS). The effects of operational parameters such as pH, mixing time, initial uranium concentration, temperature and recycle time on the adsorption of U(VI) with Luffa-AO were studied. The results showed that the saturation adsorption amount qmax reached 247.58 mg g−1, a competitive adsorption ability compared with the values reported in the previous references. Kinetics, isotherm and thermodynamics were investigated. The variation in binding energy elucidated with XPS indicated nitrogen and oxygen atoms involved in the process of complexing uranium. The study expanded the application fields of Luffa biomass and enriched the list of uranium adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Basar S, Tosun B (2021) Environmental Pollution Index and economic growth: evidence from OECD countries. Environ Sci Pollut Res 28(27):36870–36879

    Article  CAS  Google Scholar 

  2. Xu L, Deng YF, Mancl KR (2019) Environmental disaster risk reduction-oriented centralized treatment of hazardous wastes: a novel approach for production-distribution decision optimization in China. Int J Disaster Risk Reduct 40:101263

    Article  Google Scholar 

  3. Ajiboye TO, Oyewo OA, Onwudiwe DC (2021) Simultaneous removal of organics and heavy metals from industrial wastewater: a review. Chemosphere 262:128379

    Article  CAS  PubMed  Google Scholar 

  4. Adeola FO (2011) Hazardous wastes, industrial disasters, and environmental health risks: local and global environmental struggles. Springer, Berlin

    Book  Google Scholar 

  5. Asic A, Kurtovic-Kozaric A, Besic L, Mehinovic L, Hasic A, Kozaric M, Hukic M, Marjanovic D (2017) Chemical toxicity and radioactivity of depleted uranium: the evidence from in vivo and in vitro studies. Environ Res 156:665–673

    Article  CAS  PubMed  Google Scholar 

  6. Jayasinghe C, Molligoda V, Attanayaka T, Waduge V (2019) Estimation of annual effective dose due to ingestion of radioactive elements in Sri Lankan common meal plans. Environ Geochem Health 41(3):1123–1129

    Article  CAS  PubMed  Google Scholar 

  7. Faa A, Gerosa C, Fanni D, Floris G, Eyken PV, Lachowicz JI, Nurchi VM (2018) Depleted uranium and human health. Curr Med Chem 25(1):49–64

    Article  CAS  PubMed  Google Scholar 

  8. Shehzad H, Zhou LM, Wang Y, Ouyang JB, Huang GL, Liu ZR, Li Z (2019) Effective biosorption of U(VI) from aqueous solution using calcium alginate hydrogel beads grafted with amino-carbamate moieties. J Radioanal Nucl Chem 321(2):605–615

    Article  CAS  Google Scholar 

  9. Foster RI, Amphlett JTM, Kim KW, Kerry T, Lee K, Sharrad CA (2020) SOHIO process legacy waste treatment: uranium recovery using ion exchange. J Ind Eng Chem 81:144–152

    Article  CAS  Google Scholar 

  10. Da̧browski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106

    Article  PubMed  Google Scholar 

  11. Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar G, Pandith AH (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17(2):729–754

    Article  CAS  Google Scholar 

  12. Koliehova A, Trokhymenko H, Melnychuk S, Gomelya M (2019) Treatment of wastewater containing a mixture of heavy metal ions (copper–zinc, copper–nickel) using ion-exchange methods. Ecol Eng 20(11):146–151

    Article  Google Scholar 

  13. Senol A (2014) Optimization of extractive removal of uranium(VI) from aqueous acidic solutions using commercial amines: linear solvation energy relation based modeling. Sep Purif Technol 131:35–49

    Article  CAS  Google Scholar 

  14. Sen N, Darekar M, Sirsat P, Singh KK, Mukhopadhyay S, Shirsath SR, Shenoy KT (2019) Recovery of uranium from lean streams by extraction and direct precipitation in microchannels. Sep Purif Technol 227:115641

    Article  CAS  Google Scholar 

  15. Liu C, Lei X, Wang L, Jia J, Liang X, Zhao X, Zhu H (2017) Investigation on the removal performances of heavy metal ions with the layer-by-layer assembled forward osmosis membranes. Chem Eng J 327:60–70

    Article  CAS  Google Scholar 

  16. Chen X, Chen D, Li N, Xu Q, Li H, He J, Lu J (2020) Modified-MOF-808-loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal. ACS Appl Mater Interfaces 12(35):39227–39235

    Article  CAS  PubMed  Google Scholar 

  17. Xie J, Lv R, Peng H, Fan J, Tao Q, Dai Y, Zhang Z, Cao X, Liu Y (2020) Phosphate functionalized poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA): an electrospinning nanofiber for uranium separation. J Radioanal Nucl Chem 326(1):475–486

    Article  CAS  Google Scholar 

  18. Chen R, Sheehan T, Ng JL, Brucks M, Su X (2020) Capacitive deionization and electrosorption for heavy metal removal. Environ Sci Water Res 6(2):258–282

    Article  Google Scholar 

  19. Li Z, Zhang Z, Dong Z, Wu Y, Liu J, Cheng Z, Liu Y, Wang Y, Zheng Z, Cao X (2021) Synthesis of MoS2/Pg-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of uranium(VI). J Solid State Chem 302:122305

    Article  CAS  Google Scholar 

  20. Chaudhary M, Singh L, Rekha P, Srivastava VC, Mohanty P (2019) Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine. Chem Eng J 378:122236

    Article  CAS  Google Scholar 

  21. Li BY, Sun Q, Zhang YM, Abney CW, Aguila B, Lin WB, Ma SQ (2017) Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl Mater Interfaces 9(14):12511–12517

    Article  CAS  PubMed  Google Scholar 

  22. Gholizadeh M, Hu X (2021) Removal of heavy metals from soil with biochar composite: a critical review of the mechanism. J Environ Chem Eng 9:105830

    Article  CAS  Google Scholar 

  23. Bazan-Wozniak A, Pietrzak R (2020) Adsorption of organic and inorganic pollutants on activated bio-carbons prepared by chemical activation of residues of supercritical extraction of raw plants. Chem Eng J 393:124785

    Article  CAS  Google Scholar 

  24. Qiu B, Tao X, Wang H, Li W, Ding X, Chu H (2021) Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. J Anal Appl Pyrol 155:105081

    Article  CAS  Google Scholar 

  25. He LZ, Zhong H, Liu GX, Dai ZM, Brookes PC, Xu J (2019) Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China. Environ Pollut 252:846–855

    Article  CAS  PubMed  Google Scholar 

  26. Bishay A (2010) Environmental application of rice straw in energy production and potential adsorption of uranium and heavy metals. J Radioanal Nucl Chem 286(1):81–89

    Article  CAS  Google Scholar 

  27. Wang H, Gui R, Zhu W, Geng W, Chen J, Wu L (2020) Preparation process of straw-based activated carbon for uranium wastewater treatment. E3S Web Conf 185:04057

    Article  CAS  Google Scholar 

  28. Belgacem A, Rebiai R, Hadoun H, Khemaissia S, Belmedani M (2014) The removal of uranium(VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environ Sci Pollut Res 21(1):684–694

    Article  CAS  Google Scholar 

  29. Yu DY, Wang LL, Wu MH (2018) Simultaneous removal of dye and heavy metal by banana peels derived hierarchically porous carbons. J Taiwan Inst Chem Eng 93:543–553

    Article  CAS  Google Scholar 

  30. Hu H, Zhang X, Wang T, Sun LL, Wu HX, Chen XH (2018) Bamboo (Acidosasa longiligula) shoot shell biochar: its potential application to isolation of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 316(1):349–362

    Article  CAS  Google Scholar 

  31. Zhang X, Yu MY, Li YY, Cheng FF, Liu YQ, Gao MQ, Liu GL, Hu LG, Liang Y (2021) Effectiveness of discarded cigarette butts derived carbonaceous adsorbent for heavy metals removal from water. Microchem J 168:106474

    Article  CAS  Google Scholar 

  32. Frutos I, Garcia-Delgado C, Garate A, Eymar E (2016) Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials. Int J Environ Sci Technol 13(11):2713–2720

    Article  CAS  Google Scholar 

  33. Sutton J (1952) Configuration of the uranyl ion. Nature 169(4293):235–236

    Article  CAS  Google Scholar 

  34. Shen H, Xia X, Ouyang Y, Jiao X, Mutahir S, Mandler D, Hao Q (2019) Preparation of biomass-based porous carbons with high specific capacitance for applications in supercapacitors. ChemElectroChem 6(14):3599–3605

    Article  CAS  Google Scholar 

  35. Noor NM, Othman R, Mubarak NM, Abdullah EC (2017) Agricultural biomass-derived magnetic adsorbents: preparation and application for heavy metals removal. J Taiwan Inst Chem Eng 78:168–177

    Article  CAS  Google Scholar 

  36. Hagemann N, Spokas K, Schmidt HP, Kägi R, Böhler MA, Bucheli TD (2018) Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water Sui 10(2):182

    Google Scholar 

  37. Ma FQ, Dong BR, Gui YY, Cao M, Han L, Jiao CS, Lv HT, Hou JJ, Xue Y (2018) Adsorption of low-concentration uranyl ion by amidoxime polyacrylonitrile fibers. Ind Eng Chem Res 57(51):17384–17393

    Article  CAS  Google Scholar 

  38. Liu P, Yu Q, Xue Y, Chen JQ, Ma FQ (2020) Adsorption performance of U(VI) by amidoxime-based activated carbon. J Radioanal Nucl Chem 324(2):813–822

    Article  CAS  Google Scholar 

  39. Shao D, Li Y, Wang X, Hu S, Wen J, Xiong J, Marwani HM (2017) Phosphate-functionalized polyethylene with high adsorption of uranium(VI). ACS Omega 2(7):3267–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taimur S, Hassan MI, Yasin T (2017) Removal of copper using novel amidoxime based chelating nanohybrid adsorbent. Eur Polym J 95:93–104

    Article  CAS  Google Scholar 

  41. Rodrigues AE, Silva CM (2016) What’s wrong with Lagergreen pseudo first order model for adsorption kinetics? Chem Eng J 306:1138–1142

    Article  CAS  Google Scholar 

  42. Gondhalekar SC, Shukla SR (2014) Equilibrium and kinetics study of uranium(VI) from aqueous solution by Citrus limetta peels. J Radioanal Nucl Chem 302(1):451–457

    Article  CAS  Google Scholar 

  43. Zhao CS, Liu J, Tu H, Li FZ, Li XY, Yang JJ, Liao JL, Yang YY, Liu N, Sun Q (2016) Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus. Environ Sci Pollut R 23(24):24846–24856

    Article  CAS  Google Scholar 

  44. Xu ZM, Xing YX, Ren AR, Ma DD, Li YX, Hu SH (2020) Study on adsorption properties of water hyacinth-derived biochar for uranium(VI). J Radioanal Nucl Chem 324(3):1317–1327

    Article  CAS  Google Scholar 

  45. Ai L, Luo X, Lin X, Zhang S (2013) Biosorption behaviors of uranium(VI) from aqueous solution by sunflower straw and insights of binding mechanism. J Radioanal Nucl Chem 298(3):1823–1834

    Article  CAS  Google Scholar 

  46. Yi ZJ, Yao J, Xu JS, Chen MS, Li W, Chen HL, Wang F (2014) Removal of uranium from aqueous solution by using activated palm kernel shell carbon: adsorption equilibrium and kinetics. J Radioanal Nucl Chem 301(3):695–701

    Article  CAS  Google Scholar 

  47. Ahmed W, Mehmood S, Qaswar M, Ali S, Khan ZH, Ying H, Chen DY, Nunez-Delgado A (2021) Oxidized biochar obtained from rice straw as adsorbent to remove uranium(VI) from aqueous solutions. J Environ Chem Eng 9(2):105104

    Article  CAS  Google Scholar 

  48. Lu X, Zhang DX, Reda AT, Liu C, Yang Z, Guo SS, Xiao ST, Ouyang YG (2017) Synthesis of amidoxime-grafted activated carbon fibers for efficient recovery of uranium(VI) from aqueous solution. Ind Eng Chem Res 56(41):11936–11947

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. 22066001) and Natural Science Foundations of Jiangxi Province of China (No. 20202BABL213010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Dai or Qinqin Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dai, Y., Gao, Z. et al. Adsorption of uranium onto amidoxime-group mesoporous biomass carbon: kinetics, isotherm and thermodynamics. J Radioanal Nucl Chem 331, 353–364 (2022). https://doi.org/10.1007/s10967-021-08115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08115-x

Keywords

Navigation