Skip to main content
Log in

Laser-induced thermal decomposition of uranium triiodide and ammonium uranium fluoride

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Laser-induced heating is increasingly being used for rapid material processing. Here, the decomposition pathways of uranium triiodide and ammonium uranium fluoride during laser irradiation are reported. The experimental results are supported by a simplified predictive computational thermodynamics technique that provides estimation of the formation energetics of ammonium uranium fluoride. Results reveal rapid decomposition of material via laser heating with evolution of gaseous reaction products and formation of uranium metal from uranium iodide feedstock and uranium fluoride from ammonium uranium fluoride feedstock, respectively. This information can be exploited for processing of uranium precursors into desirable compounds for nuclear fuel cycle research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Katz JJ, Rabinowitch E (1951) The chemistry of uranium: the element, its binary and related compounds. McGraw-Hill

    Google Scholar 

  2. Grenthe I, Drożdżynński J, Fujino T et al (2006) Uranium. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements. Springer, Netherlands, Dordrecht, pp 253–698

    Chapter  Google Scholar 

  3. Wilkinson WD (1962) Uranium metallurgy: uranium process metallurgy. Interscience Publishers

    Google Scholar 

  4. Reiche HM, Vogel SC, Tang M (2016) In situ synthesis and characterization of uranium carbide using high temperature neutron diffraction. J Nucl Mater 471:308–316. https://doi.org/10.1016/j.jnucmat.2015.12.044

    Article  CAS  Google Scholar 

  5. Ekberg C, Ribeiro Costa D, Hedberg M, Jolkkonen M (2018) Nitride fuel for gen IV nuclear power systems. J Radioanal Nucl Chem 318:1713–1725. https://doi.org/10.1007/s10967-018-6316-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matthews RB, Chidester KM, Hoth CW et al (1988) Fabrication and testing of uranium nitride fuel for space power reactors. J Nucl Mater 151:345. https://doi.org/10.1016/0022-3115(88)90029-3

    Article  Google Scholar 

  7. Serizawa H, Fukuda K, Katsura M (1995) Study of the formation of α-U2N3+x using unstable ammonia—reaction sequence and control of nitrogen activity. J Alloy Compd 223:39–44. https://doi.org/10.1016/0925-8388(94)01442-6

    Article  CAS  Google Scholar 

  8. Akimoto Y, Tanaka K (1968) Preparation of uranium carbonitride by reaction of UC with ammonia. J Nucl Sci Technol 5:414–418. https://doi.org/10.1080/18811248.1968.9732484

    Article  CAS  Google Scholar 

  9. Yeamans CB, Silva GWC, Cerefice GS et al (2008) Oxidative ammonolysis of uranium(IV) fluorides to uranium(VI) nitride. J Nucl Mater 374:75–78. https://doi.org/10.1016/j.jnucmat.2007.06.022

    Article  CAS  Google Scholar 

  10. Silva GWC, Yeamans CB, Ma L et al (2008) Microscopic characterization of uranium nitrides synthesized by oxidative ammonolysis of uranium tetrafluoride. Chem Mater 20:3076–3084. https://doi.org/10.1021/cm7033646

    Article  CAS  Google Scholar 

  11. Harrington CD, Ruehle AE (1959) Uranium production technology. Van Nostrand

    Google Scholar 

  12. Laidler JJ, Battles JE, Miller WE et al (1997) Development of pyroprocessing technology. Prog Nucl Energy 31:131–140. https://doi.org/10.1016/0149-1970(96)00007-8

    Article  CAS  Google Scholar 

  13. Prescott R (1943) The preparation of uranium metal by the hot-wire method. Report No. Chem-S-206.

  14. Idell YS, Holliday KS, Stillwell RL, Jeffries JR (2019) Reduction of uranium triiodide to metal by thermal decomposition. J Radioanal Nucl Chem 320:793–800. https://doi.org/10.1007/s10967-019-06541-6

    Article  CAS  Google Scholar 

  15. Elhadj S, Matthews MJ, Yang ST, Cooke DJ (2012) Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics. Opt Express OE 20:1575–1587. https://doi.org/10.1364/OE.20.001575

    Article  CAS  Google Scholar 

  16. Childs BC, Martin AA, Perron A et al (2020) Formation of high purity uranium via laser induced thermal decomposition of uranium nitride. Mater Des. https://doi.org/10.1016/j.matdes.2020.108706

    Article  Google Scholar 

  17. Hartig KC, Harilal SS, Phillips MC et al (2017) Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas. Opt Express OE 25:11477–11490. https://doi.org/10.1364/OE.25.011477

    Article  CAS  Google Scholar 

  18. Utton CA, De Bruycker F, Boboridis K et al (2009) Laser melting of uranium carbides. J Nucl Mater 385:443–448. https://doi.org/10.1016/j.jnucmat.2008.12.031

    Article  CAS  Google Scholar 

  19. Manara D, Ronchi C, Sheindlin M et al (2005) Melting of stoichiometric and hyperstoichiometric uranium dioxide. J Nucl Mater 342:148–163. https://doi.org/10.1016/j.jnucmat.2005.04.002

    Article  CAS  Google Scholar 

  20. Glasser L, Jenkins HDB (2016) Predictive thermodynamics for ionic solids and liquids. Phys Chem Chem Phys 18:21226–21240. https://doi.org/10.1039/C6CP00235H

    Article  CAS  PubMed  Google Scholar 

  21. Glasser L, Jenkins HDB (2011) Volume-based thermodynamics: a prescription for its application and usage in approximation and prediction of thermodynamic data. J Chem Eng Data 56:874–880. https://doi.org/10.1021/je100683u

    Article  CAS  Google Scholar 

  22. Moore EE, Kocevski V, Juillerat CA et al (2018) Understanding the stability of salt-inclusion phases for nuclear waste-forms through volume-based thermodynamics. Sci Rep 8:15294. https://doi.org/10.1038/s41598-018-32903-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Informatics NO of D and NIST chemistry webbook. https://webbook.nist.gov/chemistry/. Accessed 23 Feb 2021

  24. Chase MW (1996) NIST-JANAF thermochemical tables for oxygen fluorides. J Phys Chem Ref Data 25:551–603. https://doi.org/10.1063/1.555992

    Article  CAS  Google Scholar 

  25. Evans WJ, Kozimor SA, Ziller JW et al (2005) Facile syntheses of unsolvated UI3 and tetramethylcyclopentadienyl uranium halides. Inorg Chem 44:3993–4000. https://doi.org/10.1021/ic0482685

    Article  CAS  PubMed  Google Scholar 

  26. Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Cryst 46:544–549. https://doi.org/10.1107/S0021889813003531

    Article  CAS  Google Scholar 

  27. Martin AA, Calta NP, Khairallah SA et al (2019) Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat Commun 10:1987. https://doi.org/10.1038/s41467-019-10009-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. RakovMel’nichenko EGEI (1984) The properties and reactions of ammonium fluorides. Russ Chem Rev 53:851–869. https://doi.org/10.1070/RC1984v053n09ABEH003126

    Article  Google Scholar 

  29. Sudarikov BN, Rakov EK, Marinina LK, Seleznev VP (1974) Summaries of papers presented at the first all-union conference on the chemistry of uranium. Moscow, p 97

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52–07NA27344. Project 18-SI-001 was funded by the LDRD Program at LLNL. The authors gratefully acknowledge sample preparation by the LLNL Materials Characterization and Processing Laboratory and theoretical discussion with Drs. Babak Sadigh, Kyoung Eun Kweon, and Nir Goldman at LLNL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley C. Childs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Childs, B.C., Martin, A.A., Moore, E.E. et al. Laser-induced thermal decomposition of uranium triiodide and ammonium uranium fluoride. J Radioanal Nucl Chem 329, 1427–1437 (2021). https://doi.org/10.1007/s10967-021-07888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07888-5

Keywords

Navigation