Skip to main content
Log in

Sorption of 134Cs radionuclide onto insoluble ferrocyanide loaded silica-gel

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Insoluble Ferrocyanide composites prepared for studying 134Cs sorption from aqueous solutions. Two different preparation techniques are used; impregnation /precipitation method (iKCoFC/SG) and core–shell method (mKCoFC/SG). Physico-chemical characterization of the prepared samples is studied by FTIR, SEM, XRD and DTA-TGA. The maximum adsorption capacities towards 134Cs are 14.803, 15.627 mg g−1 for mKCoFC/SG and iKCoFC/SG, respectively at pH 5.5 and 25 °C. The kinetic mechanism of the sorption reaction is applicable with a pseudo-second-order model. The sorption process is favourable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abtahi M, Fakhri Y, Sarafraz M, Keramati H, OliveriConti G, Ferrante M, Amanidaz N, Hosseini Pouya R, Moradi B, Baninameh Z (2018) Removal of cesium through adsorption from aqueous solutions: a systematic review. J Adv Environ Health Res 6(2):96–106. https://doi.org/10.22102/jaehr.2018.104959.1048

    Article  CAS  Google Scholar 

  2. Jia F, Wang J (2017) Separation of cesium ions from aqueous solution by vacuum membrane distillation process. Prog Nucl Energy 98:293–300. https://doi.org/10.1016/j.pnucene.2017.04.008

    Article  CAS  Google Scholar 

  3. Ma F, Li Z, Zhao H, Geng Y, Zhou W, Li Q, Zhang L (2017) Potential application of graphene oxide membranes for removal of Cs(I) and Sr(II) from high level-liquid waste. Sep Purif Technol 188:523–529. https://doi.org/10.1016/j.seppur.2017.07.062

    Article  CAS  Google Scholar 

  4. Han F, Zhang GH, Gu P (2012) Removal of cesium from simulated liquid waste with counter current two-stage adsorption followed by microfiltration. J Hazard Mater 225–226:107–113. https://doi.org/10.1016/j.jhazmat.2012.04.069

    Article  CAS  PubMed  Google Scholar 

  5. Tsai SC, Wang TH, Li MH, Wei YY, Teng SP (2009) Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J Hazard Mater 161:854–861. https://doi.org/10.1016/j.jhazmat.2008.04.044

    Article  CAS  PubMed  Google Scholar 

  6. Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Na H, Kurihara M, Watanabe M, Arisaka M, Nankawa T (2013) Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochim Acta 87:119–125. https://doi.org/10.1016/j.electacta.2012.08.124

    Article  CAS  Google Scholar 

  7. Awual MR, Suzuki S, Taguchi T, Shiwaku H, Okamoto Y, Yaita T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242:127–135. https://doi.org/10.1016/j.cej.2013.12.072

    Article  CAS  Google Scholar 

  8. Ishihara R, Fujiwara K, Harayama T, Okamura Y, Uchiyama S, Sugiyama M, Someya T, Amakai W, Umino S, Ono T, Nide A, Hirayama Y, Baba T, Kojima T, Umeno D, Saito K, Asai S, Sugo T (2011) Removal of cesium using cobalt-ferrocyanide-impregnated polymer-chain-grafted fibers. J Nucl Sci Technol 48:1281–1284. https://doi.org/10.1080/18811248.2011.9711817

    Article  CAS  Google Scholar 

  9. Lyczko N, Nzihou A, Sharrok P (2014) Calcium phosphate sorbent for environmental application. Procedia Eng 83:423–431. https://doi.org/10.1016/j.proeng.2014.09.051 (ISSN 1877-7058)

    Article  CAS  Google Scholar 

  10. Khandaker S, Kuba T, Kamida S, Uchikawa Y (2017) Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J Environ Chem Eng 5:1456–1464. https://doi.org/10.1016/j.jece.2017.02.014

    Article  CAS  Google Scholar 

  11. Wang X, Chen Z, Wang X (2015) Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions. Sci China Chem 58:1766–1773. https://doi.org/10.1007/s11426-015-5435-5

    Article  CAS  Google Scholar 

  12. Khandaker S, Toyohara Y, Kamida S, Kuba T (2018) Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resour Ind 19:35–46. https://doi.org/10.1016/j.wri.2018.01.001 (ISSN 2212-3717)

    Article  Google Scholar 

  13. Egorin A, Tokar E, Zemskova L, Didenko N, Portnyagin A, Azarova Y, Palamarchuk M, Tananaev I, Avramenko V (2017) Chitosan-ferrocyanide sorbents for concentrating Cs-137 from seawater. Sep Sci Technol 52(12):1983–1991. https://doi.org/10.1080/01496395.2017.1321669

    Article  CAS  Google Scholar 

  14. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422. https://doi.org/10.1016/j.jhazmat.2009.07.033

    Article  CAS  PubMed  Google Scholar 

  15. Vrtoch L, Pipiska M, Horník M, Augustin J, Lesny J (2011) Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified agaricus bisporus mushroom biomass. J Radioanal Nucl Chem 287:853–862. https://doi.org/10.1007/s10967-010-0837-5

    Article  CAS  Google Scholar 

  16. Chitra S, Shanmugamani AG, Sudha R, Kalavathi S, Paul B (2017) Selective removal of cesium and strontium by crystalline silicotitanates. J Radioanal Nucl Chem 312:507–515. https://doi.org/10.1007/s10967-017-5249-3

    Article  CAS  Google Scholar 

  17. Nilchi A, Malek B, Ghanadi Maragheh M, Khanchi A (2003) Exchange properties of cyanide complexes. J Radioanal Nucl Chem 258:457–462. https://doi.org/10.1023/B:JRNC.0000011738.46843.ff

    Article  CAS  Google Scholar 

  18. Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper-potassium hexacyanoferrate(II) and sorption mechanisms of cesium. J Solid State Chem 177(6):1817–1828. https://doi.org/10.1016/j.jssc.2004.01.018.462

    Article  Google Scholar 

  19. MiMura H, Kageyama N, Akiba K, Yoneya M, Miyamoto Y (1998) Ion exchange properties of potassium nickel hexacyanoferrate(II) compounds. Solvent Extr Ion Exchange 16(4):1013–1031. https://doi.org/10.1080/07366299808934566

    Article  CAS  Google Scholar 

  20. Šebesta F (1997) Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix I: methods of modification of properties of inorganic ion-exchangers for application in column packed beds. J Radioanal Nucl Chem 220:77–88

    Article  Google Scholar 

  21. Kazemian H, Zakeri H, Rabbani MS (2006) Cs and Sr removal from solution using potassium nickel hexacyanoferrate impregnated zeolites. J Radioanal Nucl Chem 268:231–236

    Article  CAS  Google Scholar 

  22. Mimura H, Kimura M, Akiba K (1999) Selective removal of cesium from sodium nitrate solutions by potassium nickel hexacyanoferrate-loaded chabazites. Sep Sci Technol 34:17–28

    Article  CAS  Google Scholar 

  23. Milonjic S, Bispo I, Fedorof M, Loos-Neskovic C, Vidal-Madjar C (2002) Sorption of cesium on copper hexacyanoferrate/polymer/silica composites in batch and dynamic conditions. J Radioanal Nucl Chem 252:497–501

    Article  Google Scholar 

  24. Rajec P, Orechovská J, Novák I (2000) NIFSIL: a new composite sorbent for cesium. J Radioanal Nucl Chem 245:317–321

    Article  CAS  Google Scholar 

  25. Orechovska J, Rajec P (1999) Sorption of cesium on composite sorbents based on nickel ferrocyanide. J Radioanal Nucl Chem 242:387–390

    Article  CAS  Google Scholar 

  26. Sharygin L, Muromskiy A, Kalyagina M, Borovkov S (2007) A granular inorganic cation-exchanger selective to cesium. J Nucl Sci Technol 44:767–773

    Article  CAS  Google Scholar 

  27. Yin X, Wu Y, Mimura H, Niibori Y, Wei Y (2014) Selective adsorption and stable solidification of radioactive cesium ions by porous silica gels loaded with insoluble ferrocyanides. Sci China Chem 57:1470–1476. https://doi.org/10.1007/s11426-014-5211-y

    Article  CAS  Google Scholar 

  28. Ivanets AI, Shashkova IL, Drozdova NV, Davydov DY, Radkevich AV (2014) Recovery of cesium ions from aqueous solutions with composite sorbents based on tripolite and copper(II) and nickel(II) ferrocyanides. Radiochemistry 56:524–528. https://doi.org/10.1134/S1066362214050129

    Article  CAS  Google Scholar 

  29. Ronda L, Bruno S, Campanini B, Mozzarelli A, Abbruzzetti S, Viappiani C, Cupane A, Levantino M, Bettati S (2015) Immobilization of proteins in silica gel: biochemical and biophysical properties. Curr Org Chem 19:1653–1668. https://doi.org/10.2174/1385272819666150601211349

    Article  CAS  Google Scholar 

  30. Ikarashi Y, Masud, RS, Nakai T, Mimura H, Ishizaki E, Matsukura, M, Hosoi Y (2013) Selective adsorption properties and stable solidification of Cs by insoluble ferrocyanide loaded zeolites. Proceedings of the 2013 21st International Conference on Nuclear Engineering. Volume 5: Fuel Cycle, Radioactive Waste Management and Decommissioning; Reactor Physics and Transport Theory; Nuclear Education, Public Acceptance and Related Issues; Instrumentation and Controls; Fusion Engineering. Chengdu, China. July 29–August 2, 2013. V005T08A005. ASME. https://doi.org/10.1115/ICONE21-15452

  31. Lagergren S (1898) About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  32. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  33. Cheung CW, Porter JF, Mckay G (2000) Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep Purif Technol 19(1–2):55–64

    Article  CAS  Google Scholar 

  34. Teng H, Hsieh CT (1999) Activation energy for oxygen chemisorption on carbon at low temperatures. Ind Eng Chem Res 38:292–297

    Article  CAS  Google Scholar 

  35. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  36. Dakroury GA, Abo-Zahra ShF, Hassan HS (2020) Utilization of olive pomace in nano MgO modification for sorption of Ni(II) and Cu(II) metal ions from aqueous solutions. Arab J Chem 13(8):6510–6522. https://doi.org/10.1016/j.arabjc.2020.06.008

    Article  CAS  Google Scholar 

  37. Ismail IM, El-Sourougy MR, Moneim NA, Aly HF (1998) Preparation, characterization, and utilization of potassium nickel hexacyanoferrate for the separation of cesium and cobalt from contaminated waste water. J Radioanal Nucl Chem 237:97–103. https://doi.org/10.1007/BF02386669

    Article  CAS  Google Scholar 

  38. Vipin AK, Ling S, Fugetsu B (2014) Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydr Polym 111:477–484. https://doi.org/10.1016/j.carbpol.2014.04.037

    Article  CAS  PubMed  Google Scholar 

  39. Joni IM, Nulhakim L, Vanitha M, Panatarani C (2018) Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor. J Phys Conf Ser 1080:012006. https://doi.org/10.1088/1742-6596/1080/1/012006

    Article  CAS  Google Scholar 

  40. Aparicio C, Machala L, Marusak Z (2011) Thermal decomposition of prussian blue under inert atmosphere. J Therm Anal Calorim 110:1–9. https://doi.org/10.1007/s10973-011-1890-1

    Article  CAS  Google Scholar 

  41. Ali S, Teruo H, Samir B, Mourad B (2014) Synthesis and characterization of silica gel from siliceous sands of southern Tunisia. Arab J Chem 7(4):486–493. https://doi.org/10.1016/j.arabjc.2010.11.007

    Article  CAS  Google Scholar 

  42. Puigdomenech I (2013) Make equilibrium diagrams using sophisticated algorithms (MEDUSA). Inorganic Chemistry. Royal Institute of Technology, Stockholm

    Google Scholar 

  43. Caroline M, Yves B, Caroline D, Agnès G, Laurent W (2015) Cs ion exchange by a potassium nickel hexacyanoferrate loaded on a granular support. Chem Eng Sci 137:904–913. https://doi.org/10.1016/j.ces.2015.07.043

    Article  CAS  Google Scholar 

  44. Zong Y, Ye D, Wang J, Zhang Y, Lin X, Luo X (2017) Preparation of a novel microsphere adsorbent of prussian blue capsulated in carboxymethyl cellulose sodium for Cs(I) removal from contaminated water. J Radioanal Nucl Chem 311(3):1577–1591. https://doi.org/10.1007/s10967-016-5111-z

    Article  CAS  Google Scholar 

  45. Lin W, Murphy CJ (2017) A demonstration of le chatelier’s principle on the nanoscale. ACS Cent Sci 3(10):1096–1102. https://doi.org/10.1021/acscentsci.7b00302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghogomu JN, Noufame TD, Ketcha MJ, Ndi NJ (2013) Removal of Pb(II) ions from aqueous solutions by kaolinite and metakaolinite materials. Curr J Appl Sci Technol 3(4):942–961. https://doi.org/10.9734/BJAST/2013/4384

    Article  Google Scholar 

  47. Sasaki T, Tanaka S (2012) Magnetic separation of cesium ion using prussian blue modified magnetite. Chem Lett 41:32–34

    Article  CAS  Google Scholar 

  48. Ding D, Zhao Y, Yang S, Shi W, Zhang Z, Lei Z, Yang Y (2013) Adsorption of cesium from aqueous solution using agricultural residue-walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res 47:2563–2571

    Article  CAS  Google Scholar 

  49. Chang C-Y, Chau L-K, Hu W-P, Wang C-Y, Liao J-H (2008) Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Microporous Mesoporous Mater 109:505–512

    Article  CAS  Google Scholar 

  50. Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231

    Article  CAS  Google Scholar 

  51. Ofomaja AE, Pholosi A, Naidoo EB (2013) Kinetics and competitive modelling of cesium biosortion onto chemically modified pine cone powder. J Taiwan Inst Chem E 44:943–951

    Article  CAS  Google Scholar 

  52. Maslova M, Mudruk N, Ivanets A, Shashkova I, Kitikova N (2020) A novel sorbent based on Ti-Ca-Mg phosphates: synthesis, characterization, and sorption properties. Environ Sci Pollut Res 27(4):3933–3949. https://doi.org/10.1007/s11356-019-06949-3

    Article  CAS  Google Scholar 

  53. Goto T, Cho SH, Lee SW, Sekino T (2018) Sorption capacity of Cs+ on titania nanotubes synthesized by solution processing. J Ceram Soc JAPAN 126(10):801–807. https://doi.org/10.2109/jcersj2.18078

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EAAE-S, GAD, HHS contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to E. A. A. El-Shazly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shazly, E.A.A., Dakroury, G.A. & Someda, H.H. Sorption of 134Cs radionuclide onto insoluble ferrocyanide loaded silica-gel. J Radioanal Nucl Chem 329, 437–449 (2021). https://doi.org/10.1007/s10967-021-07789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07789-7

Keywords

Navigation