Skip to main content
Log in

Preparation of Fe3O4@SiO2@MnO2 microspheres as an adsorbent for Th(IV) removal from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A magnetic nano-composites Fe3O4@SiO2@MnO2 were fabricated for efficient removal of Th(IV) from aqueous solutions, and characterized by SEM, TEM, XRD, FT-IR, BET, VSM, TGA and XPS. And the sorption of Th(IV) on Fe3O4@SiO2@MnO2 were investigated as a function of pH, adsorbent dosage and initial Th(IV) concentration. The results showed that the adsorption maximum was 53.19 mg g−1 for Th(IV) at pH = 3.5 and T = 298 K. In addition, the adsorption kinetics followed the second-order kinetic model, and the adsorption isotherm could be perfectly depicted by the Langmuir model. Finally, XPS analysis illustrated that the lattice oxygen (M–O) and the surface hydroxyl oxygen (M–OH) participated in adsorption. In brief, the Fe3O4@SiO2@MnO2 material could efficiently eliminate Th(IV) from aqueous solutions, which might become a promising material for adsorbing Th(IV) from environmental wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Simsek S, Senol ZM, Ulusoy HI (2017) Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of uranyl ions. J Hazard Mater 338:437–446. https://doi.org/10.1016/j.jhazmat.2017.05.059

    Article  CAS  PubMed  Google Scholar 

  2. Şenol ZM, Şenol Arslan D, Şimşek S (2019) Preparation and characterization of a novel diatomite-based composite and investigation of its adsorption properties for uranyl ions. J Radioanal Nucl Chem 321(3):791–803. doi:https://doi.org/10.1007/s10967-019-06662-y

    Article  CAS  Google Scholar 

  3. Wang L, Zhong B, Liang T, Xing B, Zhu Y (2016) Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Total Environ 572:1–8

    Article  CAS  Google Scholar 

  4. Shokri E, Yegani R, Pourabbas B, Kazemian N (2016) Preparation and characterization of polysulfone/organoclay adsorptive nanocomposite membrane for arsenic removal from contaminated water. Appl Clay 8:611–620

    Article  Google Scholar 

  5. Yaping LZ, Xu S, Liu J, Zhang XY (2017) Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes. Comput Mater Sci 139:65–74

    Article  Google Scholar 

  6. Cui D, Yang LM, Liu WZ, Cui MH, Cai WW, Wang AJ (2018) Facile fabrication of carbon brush with reduced graphene oxide (rGO) for decreasing resistance and accelerating pollutants removal in bio-electrochemical systems. J Hazard Mater 354:244–249

    Article  CAS  Google Scholar 

  7. Hu J, Tan X, Ren X, Wang X (2012) Effect of humic acid on nickel(II) sorption to Ca-montmorillonite by batch and EXAFS techniques study. Dalton Trans 41(35):10803–10810

    Article  CAS  Google Scholar 

  8. Headley JV, Peru KM, Fahlman B, Colodey A, Mcmartin DW (2013) Selective solvent extraction and characterization of the acid extractable fraction of Athabasca oils sands process waters by Orbitrap mass spectrometry. Int J Mass Spectrom 345–347:104–108

    Article  Google Scholar 

  9. Erik G, Frans G (1997) Calibration of ion-exchange HPLC measurements of glycohemoglobin: effect on interassay precision. Clin Chem 12:2353–2357

    Google Scholar 

  10. Chao X, Peishi QI, Yunzhi L (2016) Adsorption of Cd~(2+) in aqueous solution by sodium alginate-modified carbon fiber complex materials. Environ Pollut Control 38(11):52–55

    Google Scholar 

  11. Al-Dadah R, Elsayed E, Mahmoud S, Youssef PGA (2017) CPO-27(Ni), aluminium fumarate and MIL-101(Cr) MOF materials for adsorption water desalination. Desalin Int J Sci Technol Desalt Water Purif 406:25–36

    Google Scholar 

  12. Yu S, Wang X, Yang S, Sheng G, Alsaedi A, Hayat T, Wang X (2017) Interaction of radionuclides with natural and manmade materials using XAFS technique. Sci China Chem 60(2):170–187

    Article  CAS  Google Scholar 

  13. Wang N, Yang D, Wang X, Yu S, Wang H, Wen T, Song G, Yu Z, Wang X (2018) Highly efficient Pb(ii) and Cu(ii) removal using hollow Fe3O4@PDA nanoparticles with excellent application capability and reusability. Inorgan Chem Front 5(9):2174–2182. https://doi.org/10.1039/c8qi00541a

    Article  CAS  Google Scholar 

  14. Ashrafi A, Rahbar-Kelishami A, Shayesteh H (2017) Highly efficient simultaneous ultrasonic assisted adsorption of Pb(II) by Fe3O4 @MnO2 core-shell magnetic nanoparticles: synthesis and characterization, kinetic, equilibrium, and thermodynamic studies. J Mol Struct 1147:40–47

    Article  CAS  Google Scholar 

  15. Zhang X, Chen J, Han J, Zhang G (2013) Preparation and evaluation of shell–core structured Fe3O4/MnO2 magnetic adsorbent for Pb(II) removal from aqueous solutions. Acta Scien Circum 33(10):2730–2736

    CAS  Google Scholar 

  16. Zhang S, Fan Q, Gao H, Huang Y, Xia L, Li J, Xu X, Wang X (2016) Formation of Fe3O4/MnO2 ball-in-ball hollow spheres as a high performance catalyst with enhanced catalytic performances. J Mater Chem A 4(4):1414–1422

    Article  CAS  Google Scholar 

  17. Savva I, Marinica O, Papatryfonos C, Vekas L, Krasiachristoforou T (2015) Evaluation of electrospun polymer-Fe3O4 nanocomposite mats in malachite green adsorption. RSC Adv 5(21):16484–16496

    Article  CAS  Google Scholar 

  18. Sun L, Li Y, Sun M, Wang H, Xu S, Zhang C, Yang Q (2011) Porphyrin-functionalized Fe3O4@SiO2 core/shell magnetic colorimetric material for detection, adsorption and removal of Hg2+ in aqueous solution. New J Chem 35(11):2697–2704

    Article  CAS  Google Scholar 

  19. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28

    Article  CAS  Google Scholar 

  20. Wang S, Gong W, Liu X, Yao Y, Gao B, Yue Q (2007) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep Purif Technol 58(1):17–23. doi:https://doi.org/10.1016/j.seppur.2007.07.006

    Article  CAS  Google Scholar 

  21. Choi JW, Park YJ, Choi SJ (2020) Synthesis of metal-organic framework ZnO x -MOF@MnO2 composites for selective removal of strontium ions from aqueous solutions. ACS Omega 5(15):8721–8729. https://doi.org/10.1021/acsomega.0c00228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28–29

    Article  CAS  Google Scholar 

  23. Zhang L, Yang X, Wu Y (2015) Synthesis of Fe3O4@SiO2@MnO2 composite magnetic submicrospheres as adsorbent for methyl orange decolouration. IET Micro Nano Lett 10(1):12–15

    Article  Google Scholar 

  24. Tang M, Chen J, Wang P, Wang C, Ao Y (2018) Highly efficient adsorption of uranium(VI) from aqueous solution by a novel adsorbent: titanium phosphate nanotubes. Environ Sci Nano 5(10):2304–2314

    Article  CAS  Google Scholar 

  25. Wu F, Pu N, Ye G, Sun T, Wang Z, Song Y, Wang W, Huo X, Lu Y, Chen J (2017) Performance and mechanism of uranium adsorption from seawater to poly(dopamine)-inspired sorbents. Environ Sci Technol 51(8):4606–4614

    Article  CAS  Google Scholar 

  26. Kim EJ, Lee CS, Chang YY, Chang YS (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. Appl Mater Interfaces 5(19):9628–9634

    Article  CAS  Google Scholar 

  27. Wen T, Wu X, Tan X, Wang X, Xu A (2013) One-pot synthesis of water-swellable Mg–Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions. ACS Appl Mater Interfaces 5(8):3304–3311

    Article  CAS  Google Scholar 

  28. Zhang S, Zhang Y, Bi G, Liu J, Wang Z, Xu Q, Xu H, Li X (2014) Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal. J Hazard Mater 270:27–34

    Article  CAS  Google Scholar 

  29. Wang C, Luo S, Dong R, Tu X, Zeng] G (2012) Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites. Chem Eng J 187:45–52

    Article  Google Scholar 

  30. Li YL (2016) Facile preparation of MnO2 with large surface area in a rotor–stator reactor for supercapacitors. Int J Electrochem Sci 11(11):9644–9655

    CAS  Google Scholar 

  31. Tang T, Jiang W-J, Niu S, Liu N, Luo H, Zhang Q, Wen W, Chen Y-Y, Huang L-B, Gao F, Hu J-S (2018) Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting. Adv Funct Mater. https://doi.org/10.1002/adfm.201704594

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu M, Wang Y, Ma Z, Luo Y (2019) Poly(cyclotriphosphazene-co-phloroglucinol)PCPP as a solid phase extractant for preconcentrative separation of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 319(1):279–288

    Article  CAS  Google Scholar 

  33. Ma Z, Wang Y, Luo Y, Xie X, Xiong Z (2019) Highly efficient elimination of thorium(IV) from aqueous solution using poly(cyclotriphosphazene-co-melamine) microspheres. J Radioanal Nucl Chem 323(2):993–1002. doi:https://doi.org/10.1007/s10967-019-06975-y

    Article  CAS  Google Scholar 

  34. Jiang Z, Xie F, Kang C, Wang Y, Yuan L, Wang Y (2019) Adsorption of thorium(IV) from aqueous solutions by poly(cyclotriphosphazene-co-4,4′-diaminodiphenyl ether) microspheres. J Radioanal Nucl Chem 321(3):895–905. doi:https://doi.org/10.1007/s10967-019-06652-0

    Article  CAS  Google Scholar 

  35. Giri AK, Patel RK, Mahapatra SS (2011) Artificial neural network (ANN) approach for modelling of arsenic(III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chem Eng J 178(none):15–25

    Article  CAS  Google Scholar 

  36. Kumar R, Bishnoi NR, Garima, Bishnoi K (2008) Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135(3):202–208

    Article  CAS  Google Scholar 

  37. Kuncham K, Nair S, Durani S, Bose R (2017) Efficient removal of uranium(VI) from aqueous medium using ceria nanocrystals: an adsorption behavioural study. J Radioanal Nucl Chem 313(1):101–112. doi:https://doi.org/10.1007/s10967-017-5279-x

    Article  CAS  Google Scholar 

  38. Gul UD, Senol ZM, Gursoy N, Simsek S (2019) Effective UO2(2+) removal from aqueous solutions using lichen biomass as a natural and low-cost biosorbent. J Environ Radioact 205–206:93–100. doi:https://doi.org/10.1016/j.jenvrad.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  39. Şenol ZM, Şimşek S, Özer A, Şenol Arslan D (2020) Synthesis and characterization of chitosan–vermiculite composite beads for removal of uranyl ions: isotherm, kinetics and thermodynamics studies. J Radioanal Nucl Chem 327(1):159–173. doi:https://doi.org/10.1007/s10967-020-07481-2

    Article  CAS  Google Scholar 

  40. Liu HJ, Deng SX, Lei LL, Feng ZY, Qi CX, Long W (2018) Removal of trace thorium(IV) from aqueous solutions using a pseudo-polyrotaxane. Radiochim Acta 106(5):373–381. doi:https://doi.org/10.1515/ract-2016-2746

    Article  CAS  Google Scholar 

  41. Tan J, Wang Y, Liu M, He C (2017) Adsorption of thorium from aqueous solution by poly(cyclotriphosphazene-co-4,4’-sulfonyldiphenol). J Radioanal Nucl Chem 314(3):2243–2252. doi:https://doi.org/10.1007/s10967-017-5585-3

    Article  CAS  Google Scholar 

  42. Deb AKS, Mohanty BN, Ilaiyaraja P, Sivasubramanian K, Venkatraman B (2013) Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes. J Radioanal Nucl Chem 295(2):1161–1169. doi:https://doi.org/10.1007/s10967-012-1899-3

    Article  CAS  Google Scholar 

  43. Abdi S, Nasiri M, Khani MH (2020) Application of polyaniline nanocomposites in the trapping of thorium ions from aqueous solutions: adsorption equilibrium, kinetics and thermodynamics. Prog Nucl Energy 130:10. https://doi.org/10.1016/j.pnucene.2020.103537

    Article  CAS  Google Scholar 

  44. Othman NAF, Selambakkannu S, Ming TT, Mohamed NH, Yamanobe T, Seko N (2020) Application of response surface modelling to economically maximize thorium(IV) adsorption. Desalin Water Treat 179:172–182. https://doi.org/10.5004/dwt.2020.25035

    Article  CAS  Google Scholar 

  45. Ma Z, Wang Y, Liu M, Luo Y, Xie X, Xiong Z (2019) Highly efficient uranium(VI) removal from aqueous solution using poly(cyclotriphosphazene-co-4,4 ‘-diaminodiphenyl-ether) crosslinked microspheres. J Radioanal Nucl Chem 321(3):1093–1107. doi:https://doi.org/10.1007/s10967-019-06681-9

    Article  CAS  Google Scholar 

  46. Sun Y, Wang X, Ai Y, Yu Z, Huang W, Chen C, Hayat T, Alsaedi A, Wang X (2017) Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chem Eng J 310:292–299. doi:https://doi.org/10.1016/j.cej.2016.10.122

    Article  CAS  Google Scholar 

  47. Lin M, Chen Z (2020) A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater. Chemosphere 250:126329. https://doi.org/10.1016/j.chemosphere.2020.126329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.11875161); the Program of Innovative Research for Postgraduate of Hunan Province [CX20200926]. The authors are very grateful for the computing resources provided by the high-performance computation center (HPCC) of University of South China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Wang, H., Hou, S. et al. Preparation of Fe3O4@SiO2@MnO2 microspheres as an adsorbent for Th(IV) removal from aqueous solution. J Radioanal Nucl Chem 329, 253–263 (2021). https://doi.org/10.1007/s10967-021-07752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07752-6

Keywords

Navigation