Skip to main content
Log in

Effects of ageing on the occurrence form of uranium in vertical soil layers near an uranium tailing reservoir

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranium contamination due to mining and metallurgical operations is a serious problem worldwide. Upon entering an ecosystem, uranium poses a high potential threat to humans and other organisms. A better understanding of the distribution and speciation of uranium in contaminated soil is therefore necessary over relevant time scales. In this study, we collected uncontaminated soil samples, including eluvial (E), illuvial (B), and parent-material (C) horizons, from a soil profile near a uranium tailing reservoir in southern China. Four columns were filled with the E, B, and C horizons and three types of mixed soil samples to simulate the behavior of uranium in soil near an uranium tailing reservoir. The atomic-scale mechanisms were investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and other characterization methods. The results show that air, clay minerals, iron and manganese oxides, and other soil properties exert important effects on the forms and mobility of uranium in soil, and that ageing leads to a rearrangement and chemical fractionation of uranium in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rout S, Kumar A, Ravi PM, Tripathi RM (2016) Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing. J Hazard Mater 317:457–465. https://doi.org/10.1016/j.jhazmat.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  2. Massey MS, Lezama-Pacheco JS, Nelson JM et al (2014) Uranium incorporation into amorphous silica. Environ Sci Technol 48:8636–8644. https://doi.org/10.1021/es501064m

    Article  CAS  PubMed  Google Scholar 

  3. Xu Z, Xing Y, Ren A et al (2020) Study on adsorption properties of water hyacinth—derived biochar for uranium (VI). J Radioanal Nucl Chem 324:1317–1327. https://doi.org/10.1007/s10967-020-07160-2

    Article  CAS  Google Scholar 

  4. Lehmann S, Foerstendorf H, Zimmermann T et al (2019) Thermodynamic and structural aspects of the aqueous uranium(iv) system-hydrolysis vs. sulfate complexation. Dalt Trans 48:17898–17907. https://doi.org/10.1039/c9dt02886b

    Article  CAS  Google Scholar 

  5. Wang Q, Li T, Huang X, Yang G (2020) Redox mechanism and stability of uranyl phosphites at mineral surfaces: cooperative proton/electron transfer and high efficacy for Uranium(VI) reduction. Chemosphere 255:126948. https://doi.org/10.1016/j.chemosphere.2020.126948

    Article  CAS  PubMed  Google Scholar 

  6. Burns PC (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Can Miner 43:1839–1894. https://doi.org/10.2113/gscanmin.43.6.1839

    Article  CAS  Google Scholar 

  7. Forbes TZ, Wallace C, Burns PC (2008) Neptunyl compounds: polyhedron geometries, bond-valence parameters, and structural hierarchy. Can Miner 46:1623–1645. https://doi.org/10.3749/canmin.46.6.1623

    Article  CAS  Google Scholar 

  8. Zhang Z, Liu J, Cao X et al (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)-CO3/Ca-U(VI)-CO3 complexes. J Hazard Mater 300:633–642. https://doi.org/10.1016/j.jhazmat.2015.07.058

    Article  CAS  PubMed  Google Scholar 

  9. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510. https://doi.org/10.1016/j.jhazmat.2008.07.103

    Article  CAS  PubMed  Google Scholar 

  10. Semenkova A, Belousov P, Rzhevskaia A et al (2020) U (VI) sorption onto natural sorbents. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07318-y

    Article  Google Scholar 

  11. Fuller AJ, Leary P, Gray ND et al (2020) Organic complexation of U(VI) in reducing soils at a natural analogue site: implications for uranium transport. Chemosphere 254:126859. https://doi.org/10.1016/j.chemosphere.2020.126859

    Article  CAS  PubMed  Google Scholar 

  12. Ma D, Wei J, Zhao Y et al (2020) The removal of uranium using novel temperature sensitive urea-formaldehyde resin: adsorption and fast regeneration. Sci Total Environ 735:139399. https://doi.org/10.1016/j.scitotenv.2020.139399

    Article  CAS  PubMed  Google Scholar 

  13. Cumberland SA, Douglas G, Grice K, Moreau JW (2016) Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes. Earth-Sci Rev 159:160–185. https://doi.org/10.1016/j.earscirev.2016.05.010

    Article  CAS  Google Scholar 

  14. Noël V, Boye K, Kukkadapu RK et al (2019) Uranium storage mechanisms in wet-dry redox cycled sediments. Water Res 152:251–263. https://doi.org/10.1016/j.watres.2018.12.040

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Yang C, Tao Z (2009) Effects of phosphate and fulvic acid on the sorption and transport of uranium(VI) on silica column. J Radioanal Nucl Chem 279:317–323. https://doi.org/10.1007/s10967-007-7177-0

    Article  CAS  Google Scholar 

  16. Luo W, Gu B (2009) Dissolution and mobilization of uranium in a reduced sediment by natural humic substances under anaerobic conditions. Environ Sci Technol 43:152–156. https://doi.org/10.1021/es8013979

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Saiers JE, Xu N et al (2012) Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale. Environ Sci Technol 46:5931–5938. https://doi.org/10.1021/es300155j

    Article  CAS  PubMed  Google Scholar 

  18. Equeenuddin SM, Akhtar S, Bastia F et al (2020) Role of colloid in metal transport in river water around Jaduguda uranium mines, Singhbhum shear zone. J Earth Syst Sci 129:1–9. https://doi.org/10.1007/s12040-019-1262-y

    Article  CAS  Google Scholar 

  19. Zhou P, Gu B (2005) Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH. Environ Sci Technol 39:4435–4440. https://doi.org/10.1021/es0483443

    Article  CAS  PubMed  Google Scholar 

  20. Santos EA, Ladeira ACQ (2011) Recovery of uranium from mine waste by leaching with carbonate-based reagents. Environ Sci Technol 45:3591–3597. https://doi.org/10.1021/es2002056

    Article  CAS  PubMed  Google Scholar 

  21. Cheng T, Barnett MO, Roden EE, Zhuang J (2004) Effects of phosphate on uranium(VI) adsorption to goethite-coated sand. Environ Sci Technol 38:6059–6065. https://doi.org/10.1021/es040388o

    Article  CAS  PubMed  Google Scholar 

  22. Shang J, Liu C, Wang Z, Zachara JM (2011) Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity. Environ Sci Technol 45:6025–6031. https://doi.org/10.1021/es200920k

    Article  CAS  PubMed  Google Scholar 

  23. Echevarria G, Sheppard MI, Morel JL (2001) Effect of pH on the sorption of uranium in soils. J Environ Radioact 53:257–264. https://doi.org/10.1016/S0265-931X(00)00116-8

    Article  CAS  PubMed  Google Scholar 

  24. Rout S, Ravi PM, Kumar A, Tripathi RM (2015) Study on speciation and salinity-induced mobility of uranium from soil. Environ Earth Sci 74:2273–2281. https://doi.org/10.1007/s12665-015-4218-9

    Article  CAS  Google Scholar 

  25. Yang S, Zhang X, Wu X et al (2019) Understanding the solid phase chemical fractionation of uranium in soil profile near a hydrometallurgical factory. Chemosphere 236:1–10. https://doi.org/10.1016/j.chemosphere.2019.124392

    Article  CAS  Google Scholar 

  26. Pérez-Moreno SM, Gázquez MJ, Pérez-López R, Bolivar JP (2018) Validation of the BCR sequential extraction procedure for natural radionuclides. Chemosphere 198:397–408. https://doi.org/10.1016/j.chemosphere.2018.01.108

    Article  CAS  PubMed  Google Scholar 

  27. Dainyak LG, Drits VA (2009) A model for the interpretation of Mossbauer spectra of muscovite. Eur J Miner 21:99–106. https://doi.org/10.1127/0935-1221/2008/0020-1835

    Article  CAS  Google Scholar 

  28. Novikov AP, Kalmykov SN, Utsunomiya S et al (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314:638–641. https://doi.org/10.1126/science.1131307

    Article  CAS  PubMed  Google Scholar 

  29. Ahmed H, Young SD, Shaw G (2014) Factors affecting uranium and thorium fractionation and profile distribution in contrasting arable and woodland soils. J Geochem Explor 145:98–105. https://doi.org/10.1016/j.gexplo.2014.05.017

    Article  CAS  Google Scholar 

  30. Claveranne-Lamolre C, Aupiais J, Lespes G et al (2011) Investigation of uranium-colloid interactions in soil by dual field-flow fractionation/capillary electrophoresis hyphenated with inductively coupled plasma-mass spectrometry. Talanta 85:2504–2510. https://doi.org/10.1016/j.talanta.2011.07.100

    Article  CAS  Google Scholar 

  31. Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857. https://doi.org/10.1039/b207574c

    Article  CAS  PubMed  Google Scholar 

  32. Law GTW, Geissler A, Burke IT et al (2011) Uranium redox cycling in sediment and biomineral systems. Geomicrobiol J 28:497–506. https://doi.org/10.1080/01490451.2010.512033

    Article  CAS  Google Scholar 

  33. Sani RK, Peyton BM, Dohnalkova A, Amonette JE (2005) Reoxidation of reduced uranium with iron(III) (Hydr)oxides under sulfate-reducing conditions. Environ Sci Technol 39:2059–2066. https://doi.org/10.1021/es0494297

    Article  CAS  PubMed  Google Scholar 

  34. Koch-Steindl H, Pröhl G (2001) Considerations on the behaviour of long-lived radionuclides in the soil. Radiat Environ Biophys 40:93–104. https://doi.org/10.1007/s004110100098

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Lee SW, Kapoor P et al (2013) Uraninite oxidation and dissolution induced by manganese oxide: a redox reaction between two insoluble minerals. Geochim Cosmochim Acta 100:24–40. https://doi.org/10.1016/j.gca.2012.09.053

    Article  CAS  Google Scholar 

  36. Alaqarbeh M, Khalili FI, Kanoun O (2020) Manganese ferrite (MnFe2O4) as potential nanosorbent for adsorption of uranium(VI) and thorium(IV). J Radioanal Nucl Chem 323:515–537. https://doi.org/10.1007/s10967-019-06953-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 51874180, No. 51704169), the Hunan Provincial Department of Education Scientific Research Project (Grant No. 19A417), and the Science and Technology Planning Project of Hunan Province. (Grant No. 2019RS2042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Zhang, X., Wu, X. et al. Effects of ageing on the occurrence form of uranium in vertical soil layers near an uranium tailing reservoir. J Radioanal Nucl Chem 327, 847–856 (2021). https://doi.org/10.1007/s10967-020-07552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07552-4

Keywords

Navigation