Skip to main content
Log in

New adsorptive composite membrane from recycled acrylic fibers and Sargassum dentifolium marine algae for uranium and thorium removal from liquid waste solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Novel adsorption Algal polymer composite membrane composed of acrylic fiber wastes and grinded marine algae; Sargassum dentifolium was newly prepared using inversion precipitation technique. The adsorption of uranium and thorium from their waste solution was evaluated. The results indicated that the sorption capacities for U and Th were 62 and 59.4 (mg g−1), respectively, within short time. Adsorption experimental data demonstrated that both metal ions were well fitting with Langmuir isotherm and pseudo-second order kinetics model. The reusability of the composite membrane indicates the stability and efficiency of it in U and Th removal from waste solution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chakraborty S, Favre F, Banerjee D, Scheinost A, Mullet M, Ehrhardt J, Brendle J, Vidal L, Charlet L (2010) U(VI) sorption and reduction by Fe(II) sorbed on montmorillonite. Environ Sci Technol 44:3779–3785

    CAS  Google Scholar 

  2. Majdan M, Pikus S, Gajowiak A, Sternik D, Zięba E (2010) Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide. J Hazard Mater 184:662–670

    CAS  Google Scholar 

  3. Sun Y, Ding C, Cheng W, Wang X (2014) Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408

    CAS  Google Scholar 

  4. Chen C, Wang J (2016) Uranium removal by novel grapheme oxide-immobilized Saccharomyces cerevisiae gel beads. J Environ Radioact 162:134–145

    Google Scholar 

  5. Chen Y, Wang J (2010) Removal of radionuclide Sr2 ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451

    Google Scholar 

  6. Anirudhan T, Radhakrishnan P (2009) Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue. Appl Surf Sci 255:4983–4991

    CAS  Google Scholar 

  7. Zhu Y, Hu J, Wang J (2014) Removal of Co2 from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Prog Nucl Energ 71:172–178

    CAS  Google Scholar 

  8. Chen Y, Wang J (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem Eng J 168:286–292

    CAS  Google Scholar 

  9. Wang J (2002) Microbial immobilization techniques and water pollution control. Science Press, Beijing, pp 233–247

    Google Scholar 

  10. El-Shahat M, Abdelhamid AE, Abdelhameed RM (2020) Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan. Carbohydr Polym 231:115742. https://doi.org/10.1016/j.carbpol.2019.115742

    Article  CAS  Google Scholar 

  11. Moghazy RM, Labena A, Husien S, Mansor ES, Abdelhamid AE (2020) Neoteric approach for efficient eco-friendly dye removal and recovery using algal-polymer biosorbent sheets: Characterization, factorial design, equilibrium and kinetics. Int J Biol Macromol 157:494–509. https://doi.org/10.1016/j.ijbiomac.2020.04.165

    Article  CAS  Google Scholar 

  12. Zidan TA, Abdelhamid AE, Zaki EG (2020) N-Aminorhodanine modified chitosan hydrogel for antibacterial and copper ions removal from aqueous solutions. Int J Biol Macromol 158:32–42. https://doi.org/10.1016/j.ijbiomac.2020.04.180

    Article  CAS  Google Scholar 

  13. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Google Scholar 

  14. Orabi A (2019) Synthesis of a cellulose derivative for enhanced sorption and selectivity of uranium from phosphate rocks prior to its fluorometric determination. Int J Environ Anal Chem 99(8):741–766

    CAS  Google Scholar 

  15. Weheish H, Abdou A, Mahmoud W, Ahmed Sh, Orabi A (2019) Extraction and determination of Th(IV) from aqueous acidic solutions using natural cassitrite adsorbent. SN Appl Sci 1:1395. https://doi.org/10.1007/s42452-019-1481-5

    Article  CAS  Google Scholar 

  16. Orabi A, El-Sheikh E, Saleh W, Youssef A, El-Kady M, Shalaby Z (2016) Potentiality of uranium adsorption from wet phosphoric acid using amine-impregnated cellulose. J Radiat Res Appl Sci 9:193–206

    CAS  Google Scholar 

  17. Orabi A, Atrees M, Salem H (2018) Selective preconcentration of uranium on chitosan Steroyl thiourea prior to its spectrophotometric determination. Sep Sci Technol 53(14):2267–2283. https://doi.org/10.1080/01496395.2018.1445113

    Article  CAS  Google Scholar 

  18. Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141

    CAS  Google Scholar 

  19. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    CAS  Google Scholar 

  20. Yu J, Wang J, Jiang Y (2017) Removal of uranium from aqueous solution by calcium alginate gel beads. Nucl Eng Technol 49(3):534–540. https://doi.org/10.1016/j.net.2016.09.004

    Article  CAS  Google Scholar 

  21. Husien S, Labena A, El-Belely EF, Mahmoud HM, Hamouda AS (2019) Adsorption studies of hexavalent chromium [Cr(VI)] on micro-scale biomass of Sargassum dentifolium, Seaweed. J Environ Chem Eng 7:103444. https://doi.org/10.1016/j.jece.2019.103444

    Article  CAS  Google Scholar 

  22. Moghazy RM, Labena A, Husien S (2019) Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): full factorial design, equilibrium, and kinetic studies. Int J Biol Macromol 134:330–343. https://doi.org/10.1016/j.ijbiomac.2019.04.207

    Article  CAS  Google Scholar 

  23. Tahaei P, Abdouss M, Edrissi M, Shoushtari A, Zargaran M (2008) Mat-wiss u Werkstofftech 39:839–844

    CAS  Google Scholar 

  24. Zargaran M, Shoushtari A, Abdouss M (2008) J Appl Polym Sci 110:3843–3849

    CAS  Google Scholar 

  25. Bajaj P, Paliwal DK, Gupta AK (1996) Modification of acrylic fibres for specific end uses. Indian J Fibre Text Res 21:143–154

    CAS  Google Scholar 

  26. Deng S, Bai R, Chen JP (2003) Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 19:5058–5064. https://doi.org/10.1021/la034061x

    Article  CAS  Google Scholar 

  27. Zhang L, Zhang X, Li P, Zhang W (2009) Effective Cd2+ chelating fiber based on polyacrylonitrile. React Funct Polym 69:48–54. https://doi.org/10.1016/j.reactfunctpolym.2008.10.008

    Article  CAS  Google Scholar 

  28. lehi A, Akbari A (2017) Novel membrane adsorbents prepared by waste fibers of mechanized carpet for Persian Orange X removal. Environ Nanotechnol Monit Manag 8:209–218. https://doi.org/10.1016/j.enmm.2017.08.004

    Article  Google Scholar 

  29. Sastre de Vicente M, Rodriguez-Barro P, Herrero R, Vilariño T, Lodeiro P, Barriada J (2020) Chapter 42—biosorption of chemical species by Sargassum algal biomass: equilibrium data, part I. In: Handbook of algal science, technology and medicine, pp 675–696. https://doi.org/10.1016/B978-0-12-818305-2.00042-5

  30. Omar H, El-Gendy A, Al-Ahmary K (2018) Bioremoval of toxic dye by using different marine macroalgae. Turk J Bot 42:15–27. https://doi.org/10.3906/bot1703-4

    Article  CAS  Google Scholar 

  31. Abdelhamid A, Khalil A (2019) Polymeric membranes based on cellulose acetate loaded with candle soot nanoparticles for water desalination. J Macromol Sci Part A 56(2):153–161. https://doi.org/10.1080/10601325.2018.1559698

    Article  CAS  Google Scholar 

  32. Marczenko Z (1986) Separation and spectrophotometric determination of elements, vol 60. Wiley, New York

    Google Scholar 

  33. Orabi A (2019) Extraction of uranium from carbonate solution using synthesized Schiff base and its application for spectrophotometric determination. Chem Pap 73:1713–1730. https://doi.org/10.1007/s11696-019-00724-x

    Article  CAS  Google Scholar 

  34. Kazy S, Sar P, D’Souza S (2008) Studies on uranium removal by the extracellular polysaccharide of a Pseudomonas aeruginosa Strain. Bioremediat J 12(2):47–57. https://doi.org/10.1080/10889860802052870

    Article  CAS  Google Scholar 

  35. Yi Y, Xu Z, Liu Y, Guo X, Ou M, Xu X (2017) Highly efficient removal of uranium(VI) from wastewater by polyacrylic acid hydrogels. RSC Adv 7:6278–6287

    CAS  Google Scholar 

  36. El-Sonbati A, El-Bindary A, Rashed I (2002) Polymer complexes XXXVII novel models and structural of symmetrical poly-Schiff base on heterobinuclear complexes of dioxouranium(VI). Spectrochim Acta Part A 58:1411–1424

    CAS  Google Scholar 

  37. Yilmaz I, Temel H, Alp H (2008) Synthesis, electrochemistry and in situ spectroelectro-chemistry of a new Co(III) thio Schiff-base complex with N,N′-bis(2-amino thiophenol)-1,4-bis(carboxylidene phenoxy)butane. Polyhedron 27:125–132

    CAS  Google Scholar 

  38. Cejka J (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. In: Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment. Minerological review, vol 38. Mineralogical Society of America, Washington, pp 521–622

    Google Scholar 

  39. Salam M, Jahangir S, Chowdhury D, Siddique Z (1997) Dioxouranium(VI) complexes of some dibasic tridentate ONO donor ligand systems. Chittagong Univ Stud Part II 21(1):23–28

    CAS  Google Scholar 

  40. Chowdhury D, Uddin M, Sarker M (2008) Synthesis and characterization of dioxo uranium(VI) complexes of some aroylhydrazines and their Schiff bases with acetone. Chiang Mai J Sci 35(3):483–494

    CAS  Google Scholar 

  41. Fouad H, Elenein SA, Orabi A, Abdulmoteleb S (2019) A new extractant impregnated resin for separation of traces of uranium and thorium followed by their spectrophotometric determination in some geological samples. SN Appl Sci 1:309. https://doi.org/10.1007/2fs42452-019-0325-7

    Article  Google Scholar 

  42. Pool JA, Scott BL, Kiplinger JL (2005) A new mode of reactivity for pyridine N-oxide: C–H activation with uranium(IV) and thorium(IV) bis(alkyl) complexes. J Am Chem Soc 127:1338–1339

    CAS  Google Scholar 

  43. Cheira M (2020) Performance of poly sulfonamide/nano-silica composite for adsorption of thorium ions from sulfate solution. SN Appl Sci 2:398. https://doi.org/10.1007/s42452-020-2221-6

    Article  CAS  Google Scholar 

  44. Zhang H, Quan L, Gao A, Tong Y, Shi F, Xu L (2019) The structure and properties of polyacrylonitrile nascent composite fibers with grafted multi walled carbon nanotubes prepared by wet spinning method. Polymers 11(3):422. https://doi.org/10.3390/polym11030422

    Article  CAS  Google Scholar 

  45. Dong XG, Wang CG, Chen J, Cao WW (2008) Crystallinity development in polyacrylonitrile nascent fibers during coagulation. J Polym Res 15:125–130

    CAS  Google Scholar 

  46. Cheira M, Orabi A, Hassanin M, Hassan S (2018) Chem Data Collect 13–14:84–103. https://doi.org/10.1016/j.cdc.2018.01.003

    Article  Google Scholar 

  47. Barbano P, Rigali L (1978) Anal Chim Acta 96(1):199–201

    CAS  Google Scholar 

  48. Sato T (1983) Hydrometallurgy 22:121–140

    Google Scholar 

  49. Jha M, Kumar V, Singh R (2002) Solvent Extr Ion Exch 20(3):389–405

    CAS  Google Scholar 

  50. Hosseini-Bandegharaei A, Hosseini M, Jalalabadi Y, Nedaie M, Sarwghadi M, Taherian A, Hosseini E (2011) A novel extractantimpregnated resin containing carminic acid for selective separation and pre-concentration of uranium(VI) and thorium(IV). Int J Environ Anal Chem 93:108–124. https://doi.org/10.1080/03067319.2011.620706

    Article  CAS  Google Scholar 

  51. Maihub A, El-ajaily M, Aboukrish M (2003) Synthesis and characterization of some homodinuclear mixed ligand complexes of Co(II) and Cu(II) part II. Jerash Res Stud 7(2):41–47

    Google Scholar 

  52. Merdivan M, Zahir Z, Hamamci C (2001) Sorption behaviour of uranium(VI) with N,N-dibutyl-N-benzoylthiourea impregnated in amberlite XAD-16. Talanta 55:639–645

    CAS  Google Scholar 

  53. Upase A, Zade A, Kalbende P (2011) Spectrophotometric microdetermination of thorium(IV) and uranium(VI) with chrome azurol-S in presence of cationic surfactant. E J Chem 8(3):1132–1141

    CAS  Google Scholar 

  54. Bursali E, Merdivan E, Yurdakoc M (2010) Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent. J Radioanal Nucl Chem 283:471–476. https://doi.org/10.1007/s10967-009-0365-3

    Article  CAS  Google Scholar 

  55. Khalifa M (1998) Selective separation of uranium using alizarin red S (ARS)-modified anion-exchange resin or by flotation of U-ARS chelate. Sep Sci Technol 33:2123–2141. https://doi.org/10.1080/01496399808545719

    Article  CAS  Google Scholar 

  56. Mishra S, Achary G, Das M (2012) Adsorption of Cu(II) by used aqua guard carbon(UAC). J Chem Pharm Res 4(2):1207–1216

    CAS  Google Scholar 

  57. Sharma I, Goyal D (2009) Kinetic modeling: chromium(III) removal from aqueous solution bymicrobial waste biomass. J Sci Ind Res 68:640–646

    CAS  Google Scholar 

  58. Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/s0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  59. Lagergren S (1898) About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  60. Hosseini-Bandegharaei A, Khamirchi R, Hekmat-Shoar R, Rahmani-Sani A, Rastegar A, Pajohankia Z, Fattahi Z (2016) Sorption efficiency of three novel extractant-impregnated resins containing vesuvin towards Pb(II) ion: effect of nitrate and aminefunctionalization of resin backbone. Coll Surf A Physicochem Eng Asp 504(5):62–74. https://doi.org/10.1016/j.colsurfa.2016.05.060

    Article  CAS  Google Scholar 

  61. Hosseini-Bandegharaei A, Alahabadi A, Rahmani-Sani A, Rastegar A, Khamirchi R, Mehrpouyan M, Agah J, Pajohanki Z (2016) Effect of nitrate and amine functionalization on the adsorption properties of a macroporous resin towards tetracycline antibiotic. J Taiwan Inst Chem Eng 66:143–153

    CAS  Google Scholar 

  62. Prabhakaran D, Subramanian M (2004) Selective extraction of U(VI), Th(IV), and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin. Anal Bioanal Chem 379:519–525. https://doi.org/10.1007/s00216-004-2600-7

    Article  CAS  Google Scholar 

  63. Elsalamouny A, Desouky O, Mohamed S, Galhoum A (2016) Evaluation of adsorption behavior for U(VI) and Th(IV) ions onto solidified Mannich type material. J Dispers Sci Technol 38:860–865. https://doi.org/10.1080/01932691.2016.1207546

    Article  CAS  Google Scholar 

  64. Ali A, Nouh E (2019) Rhodamine-B modified silica for uranium(VI) extraction from aqueous waste samples. Sep Sci Technol 54(4):602–614. https://doi.org/10.1080/01496395.2018.1512620

    Article  CAS  Google Scholar 

  65. Orabi A, Elenein S, Abdulmoteleb Sh (2019) Amberlite XAD-2010 impregnated with chrome azurol S for separation and spectrophotometric determination of uranium and thorium. Chem Afr 2:673–688. https://doi.org/10.1007/s42250-019-00072-z

    Article  CAS  Google Scholar 

  66. Oren S, Caykara T, Kantoglu O, Olgun CJ (2000) Effect of pH, ionic strength and temperature on uranyl ion adsorption by poly(N-vinyl-2-pyrrolidone-gtartaric acid) hydrogels. J Appl Polym Sci 78:2219–2226

    CAS  Google Scholar 

  67. Morsy AM (2017) Performance of magnetic talc titanium oxide composite for thorium ions adsorption from acidic solution. Environ Technol Innov 8:399–410

    Google Scholar 

  68. Morsy A (2015) Adsorptive removal of uranium ions from liquid waste solutions by phosphorylated chitosan. Environ Technol Innov 4:299–310

    Google Scholar 

  69. Kaygun AK, Akyil S (2007) Study of the behaviour of thorium adsorption on PAN/zeolite composite adsorbent. J Hazard Mater 147:357–362. https://doi.org/10.1016/j.jhazmat.2007.01.020

    Article  CAS  Google Scholar 

  70. Kadous A, Didi M, Villemin D (2010) A new sorbent for uranium extraction: ethylenediamino tris(methylenephosphonic) acid grafted on polystyrene resin. J Radioanal Nucl Chem 284:431–438. https://doi.org/10.1007/s10967-010-0495-7

    Article  CAS  Google Scholar 

  71. Xiao-teng Z, Dong-mei J, Yi-qun X, Jun-chang C, Shuai H, Liang-shu X (2019) Adsorption of Uranium(VI) from aqueous solution by modified rice stem. Hindawi J Chem 2019:1–10. https://doi.org/10.1155/2019/6409504

    Article  CAS  Google Scholar 

  72. Venkatesan K, Sukumaran V, Antony P (2004) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260:443–450. https://doi.org/10.1023/B:JRNC.0000028201.35850.72

    Article  CAS  Google Scholar 

  73. Kütahyal C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256. https://doi.org/10.1016/j.jnucmat.2009.11.018

    Article  CAS  Google Scholar 

  74. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058. https://doi.org/10.1016/j.jhazmat.2009.02.157

    Article  CAS  Google Scholar 

  75. Nouh E (2020) Manganese oxide-coated wool as adsorbent for U(VI) removal from aqueous waste solutions. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1751834

    Article  Google Scholar 

  76. Wu J, Tian K, Wang J (2018) Adsorption of uranium(VI) by amidoxime modified multiwalled carbon nanotubes. Prog Nucl Energy 106:79–86. https://doi.org/10.1016/j.pnucene.2018.02.020

    Article  CAS  Google Scholar 

  77. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution. J Phys Chem B 113:860–864

    CAS  Google Scholar 

  78. Hu Y, Zhao C, Yin L, Wen T, Yang Y, Ai Y, Wang X (2018) Combining batch technique with theoretical calculation studies to analyze the highly efficient enrichment of U(VI) and Eu(III) on magnetic MnFe2O4 nanocubes. Chem Eng J 349:347–357. https://doi.org/10.1016/j.cej.2018.05.070

    Article  CAS  Google Scholar 

  79. Zhao Y, Li J, Zhang S, Chen H, Shao D (2013) Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxide composites. RSC Adv 3:18952–18959. https://doi.org/10.1039/c3ra42236d

    Article  CAS  Google Scholar 

  80. Foo K, Hameed B (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  81. Srinivasan T, Rao P, Sood D (1997) Solvent Extr Ion Exch 15:15–31. https://doi.org/10.1080/07366299708934463

    Article  CAS  Google Scholar 

  82. Sajjadi S, Meknati A, Lima E, Dotto G, Mendoza-Castillo D, Anastopoulos I, Alakhras F, Unuabonah E, Singh P, Hosseini-Bandegharaei A (2019) A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J Environ Manag 236:34–44

    CAS  Google Scholar 

  83. Srinivasan T, Rao P, Sood D (1997) The effect of temperature on the extraction of uranium(VI) from nitric acid by tri-n-amyl phosphate. Solv Extr Ion Exch 15:15–31

    CAS  Google Scholar 

  84. Elsalamouny A, Desouky O, Mohamed S, Galhoum A, Guibal E (2017) Evaluation of adsorption behavior for U(VI) and Nd(III) ions onto fumarated polystyrene microspheres. J Radioanal Nucl Chem 314:429–437. https://doi.org/10.1007/s10967-017-5389-5

    Article  CAS  Google Scholar 

  85. Khawassek Y, Masoud A, Taha M, Hussein A (2018) Kinetics and thermodynamics of uranium ion adsorption from waste solution using Amberjet 1200 H as cation exchanger. J Radioanal Nucl Chem 315:493–502. https://doi.org/10.1007/s10967-017-5692-1

    Article  CAS  Google Scholar 

  86. Ahmad A (2020) Kinetics of uranium adsorption from sulfate medium by a commercial anion exchanger modified with quinoline and silicate. J Radioanal Nucl Chem 324:1387–1403. https://doi.org/10.1007/s10967-020-07169-7

    Article  CAS  Google Scholar 

  87. Galhoum A, Eisa W, El-Tantawy I, Tolba A, Shalaby Z, Mohamady S, Muhammad S, Hussien S, Akashi T, Guibal E (2020) A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl methacrylate)-magnetic nanocomposite—application to uranium sorption from ore leachate. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.114797

    Article  Google Scholar 

  88. Yousef L (2020) Recovery of uranium(VI) from sulfate leach liquor using modified Duolite. Z Anorg Allg Chem. https://doi.org/10.1002/zaac.202000059

    Article  Google Scholar 

  89. Morsy A, Taha M, Saeed M, Waseem A, Riaz M, Elmaadawy M (2019) Isothermal, kinetic, and thermodynamic studies for solid-phase extraction of uranium(VI) via hydrazine-impregnated carbon based material as efficient adsorbent. Nucl Sci Tech 30(167):1–11. https://doi.org/10.1007/s41365-019-0686-z

    Article  Google Scholar 

  90. Ismail L, Khalili F, Orabi F (2020) Modification of silica nanoparticles with cysteine or methionine amino acids for the removal of uranium (VI) from aqueous solution. Silicon. https://doi.org/10.1007/s12633-019-00361-9

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges to my institution (Nuclear Materials Authority) for its support and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hussien Orabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orabi, A.H., Abdelhamid, A.ES., Salem, H.M. et al. New adsorptive composite membrane from recycled acrylic fibers and Sargassum dentifolium marine algae for uranium and thorium removal from liquid waste solution. J Radioanal Nucl Chem 326, 1233–1247 (2020). https://doi.org/10.1007/s10967-020-07403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07403-2

Keywords

Navigation