Skip to main content
Log in

Evidences for the use of 14C content in the root exudates as a novel application of radiocarbon labelling for screening iron deficiency tolerance of soybean (Glycine max (L.) Merr.) genotypes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Four genotypes of soybean viz. NRC-45, IC-18734, J-231 and G-2132, which differ in their inherent ability to tolerate iron limiting stress, were selected as representative genotypes for iron efficient and responsive (FeER), iron inefficient and responsive (FeIR), iron efficient and nonresponsive (FeENR) and iron inefficient and nonresponsive (FeINR) categories, respectively. The relative performance of these genotypes to iron limiting stress was evaluated in hydroponics experiment with low iron (−Fe) and sufficient iron (+Fe). We hypothesised that the genotype exhibiting higher iron deficiency tolerance would exhibit greater root exudation capacity, which in turn can be screened through radiocarbon labelling technique, by counting the 14C content in the total root exudates (14CTRE). The genotype FeER (NRC-45) exuded out significantly higher amount of 14C in the total root exudates with the lower and upper bound values within 95% confidence interval (CI) were 151.9 and 163.6 Bq g−1 fw root−1 (FeER: NRC-45), followed by 138.5 and 150.1 Bq g−1 fw root−1 (FeENR: J-231), 86.5 and 98.1 Bq g−1 fw root−1 (FeIR: IC-18734), and 63.3 and 74.9 Bq g−1 fw root−1 (FeINR: G-2132) under Fe deficient (−Fe) condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reyhanitabar A, Khalkal K, Pashapour N (2017) Relationship between available Fe and its chemical fractions in some calcareous soils of east Azarbaijan Province. JWSS-Isfahan Univ Technol 21(3):69–83

    Google Scholar 

  2. Lindsay WL (1995) Chemical reactions in soils that affect iron availability to plants: a quantitative approach. In: Abadía J (ed) Iron nutrition in soils and plants. Springer, Dordrecht, pp 7–14 https://doi.org/10.1007/978-94-011-0503-3_2

  3. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152. https://doi.org/10.1146/annurev-arplant-042811-105522

    Article  CAS  PubMed  Google Scholar 

  4. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12(3):259–266. https://doi.org/10.1016/j.pbi.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9(3):248–255. https://doi.org/10.1016/j.pbi.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  6. Pestana M, Correia PJ, de Varennes A, Abadía J, Faria EA (2001) Effectiveness of different foliar iron applications to control iron chlorosis in orange trees grown on a calcareous soil. J Plant Nutr 24(4–5):613–622. https://doi.org/10.1081/PLN-100103656

    Article  CAS  Google Scholar 

  7. Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10(3):276–282. https://doi.org/10.1016/j.pbi.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  8. Kabir AH, Paltridge NG, Roessner U, Stangoulis JC (2013) Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. Physiol Plant 147(3):381–395. https://doi.org/10.1111/j.1399-3054.2012.01682.x

    Article  CAS  PubMed  Google Scholar 

  9. Krouma A, Gharsalli M, Abdelly C (2003) Differences in response to iron deficiency among some lines of common bean. J Plant Nutr 26(10–11):2295–2305. https://doi.org/10.1081/PLN-120024282

    Article  CAS  Google Scholar 

  10. Kabir AH, Rahman MM, Haider SA, Paul NK (2015) Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). Environ Exp Bot 112:16–26. https://doi.org/10.1016/j.envexpbot.2014.11.011

    Article  CAS  Google Scholar 

  11. O’Rourke JA, Charlson DV, Gonzalez DO, Vodkin LO, Graham MA, Cianzio SR, Grusak MA, Shoemaker RC (2007) Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genom 8(1):476. https://doi.org/10.1186/1471-2164-8-476

    Article  Google Scholar 

  12. Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20(1):33–40. https://doi.org/10.1016/j.tplants.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  13. Larbi A, Abadía A, Abadía J, Morales F (2006) Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res 89(2–3):113–126. https://doi.org/10.1007/s11120-006-9089-1

    Article  CAS  PubMed  Google Scholar 

  14. Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497(7447):60–66. https://doi.org/10.1038/nature11909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeong J, Guerinot ML (2009) Homing in on iron homeostasis in plants. Trends Plant Sci 14(5):280–285. https://doi.org/10.1016/j.tplants.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  16. Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125(5):1015–1031. https://doi.org/10.1007/s00122-012-1891-x

    Article  PubMed  Google Scholar 

  17. Scaboo AM, Chen P, Sleper DA, Clark KM (2010) Classical breeding and genetics of soybean. In: Bilyeu K, Ratnaparkhe MB, Kole C (eds) Genetics, genomics and breeding of soybean. Science Publishers, New York, pp 19–54

    Chapter  Google Scholar 

  18. Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP (2012) Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant, Cell Environ 35(1):38–52. https://doi.org/10.1111/j.1365-3040.2011.02378.x

    Article  Google Scholar 

  19. Srinives P, Kitsanachandee R, Chalee T, Sommanas W, Chanprame S (2010) Inheritance of resistance to iron deficiency and identification of AFLP markers associated with the resistance in mungbean (Vigna radiata (L.) Wilczek). Plant Soil 335(1–2):423–437. https://doi.org/10.1007/s11104-010-0431-1

    Article  CAS  Google Scholar 

  20. Vamerali T, Bandiera M, Mosca G (2012) Minirhizotrons in modern root studies. In: Mancuso S (ed) Measuring roots. Springer, Berlin, pp 341–361. https://doi.org/10.1007/978-3-642-22067-8_17

  21. Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Soil Sci Plant Nutr 174(1):3–11. https://doi.org/10.1002/jpln.201000085

    Article  CAS  Google Scholar 

  22. Krishnapriya V, Pandey R (2016) Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop Pasture Sci 67(10):1096–1109. https://doi.org/10.1071/CP15329

    Article  CAS  Google Scholar 

  23. Raj KK, Pandey RN, Singh B, Talukdar A (2019) 14C labelling as a reliable technique to screen soybean genotypes (Glycine max (L.) Merr.) for iron deficiency tolerance. J Radioanal Nucl Chem 322(2):655–662. https://doi.org/10.1007/s10967-019-06708-1

    Article  CAS  Google Scholar 

  24. Lin SF, Baumer JS, Ivers D, de Cianzo SR, Shoemaker RC (1998) Field and nutrient solution tests measure similar mechanisms controlling iron deficiency chlorosis in soybean. Crop Sci 38(1):254–259. https://doi.org/10.2135/cropsci1998.0011183X003800010043x

    Article  CAS  Google Scholar 

  25. Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141(2):674–684. https://doi.org/10.1104/pp.105.076497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh B, Ahuja S, Pandey R, Singhal RK (2014) 14CO2 labeling: a reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crop plants. J Radioanal Nucl Chem 302(3):1315–1320. https://doi.org/10.1007/s10967-014-3531-1

    Article  CAS  Google Scholar 

  27. Dieuaide-Noubhani M, Raffard G, Canioni P, Pradet A, Raymond P (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C or 14C-labeled glucose. J Biol Chem 270(22):13147–13159. https://doi.org/10.1074/jbc.270.22.13147

    Article  CAS  PubMed  Google Scholar 

  28. Pandey R, Krishnapriya V, Kishora N, Singh SB, Singh B (2013) Shoot labelling with 14CO2: a technique for assessing total root carbon exudation under phosphorus stress. Indian J Plant Physiol 18(3):250–262. https://doi.org/10.1007/s40502-013-0041-z

    Article  Google Scholar 

  29. Singh B, Pandey R (2003) Differences in root exudation among phosphorus-starved genotypes of maize and green gram and its relationship with phosphorus uptake. J Plant Nutr 26(12):2391–2401. https://doi.org/10.1081/PLN-120025467

    Article  CAS  Google Scholar 

  30. Raj KK, Pandey RN, Singh B, Meena MC, Talukdar A (2019) Mobilization of iron from calcareous vertisol to minimize iron deficiency chlorosis of soybean [Glycine max (L.) Merr.]. J Ind Soc Soil Sci 67(3):351–359. https://doi.org/10.5958/0974-0228.2019.00038.0

    Article  Google Scholar 

  31. Godwin H (1962) Half-life of radiocarbon. Nature 195(4845):984. https://doi.org/10.1038/195984a0

    Article  CAS  Google Scholar 

  32. Mamidi S, Lee RK, Goos JR, McClean PE (2014) Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PLoS ONE 9(9):e107469. https://doi.org/10.1371/journal.pone.0107469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mamidi S, Chikara S, Goos RJ, Hyten DL, Annam D, Moghaddam SM, Lee RK, Cregan PB, McClean PE (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4(3):154–164. https://doi.org/10.3835/plantgenome2011.04.0011

    Article  CAS  Google Scholar 

  34. Lin SF, Grant D, Cianzio S, Shoemaker R (2000) Molecular characterization of iron deficiency chlorosis in soybean. J Plant Nutr 23(11–12):1929–1939. https://doi.org/10.1080/01904160009382154

    Article  CAS  Google Scholar 

  35. Lin S, Cianzio S, Shoemaker R (1997) Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed 3(3):219–229. https://doi.org/10.1023/A:1009637320805

    Article  CAS  Google Scholar 

  36. Dong D, Peng X, Yan X (2004) Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol Plant 122(2):190–199. https://doi.org/10.1111/j.1399-3054.2004.00373.x

    Article  CAS  Google Scholar 

  37. Jackson ML (1973) Soil Chemical Analysis. New Delhi, Prentice Hall (India) Pvt. Ltd.

    Google Scholar 

  38. Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57(12):1332–1334. https://doi.org/10.1139/b79-163

    Article  CAS  Google Scholar 

  39. Kabir AH, Paltridge NG, Able AJ, Paull JG, Stangoulis JC (2012) Natural variation for Fe-efficiency is associated with up regulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L. Planta 235(6):1409–1419. https://doi.org/10.1007/s00425-011-1583-9

    Article  CAS  PubMed  Google Scholar 

  40. Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50(2):208–213. https://doi.org/10.1104/pp.50.2.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515. https://doi.org/10.1146/annurev.genet.42.110807.091452

    Article  CAS  PubMed  Google Scholar 

  42. Yadavalli V, Jolley CC, Malleda C, Thangaraj B, Fromme P, Subramanyam R (2012) Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii. PLoS ONE 7(4):e35084. https://doi.org/10.1371/journal.pone.0035084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grusak MA, Pezeshgi S (1996) Shoot-to-root signal transmission regulates root Fe(III) reductase activity in the dgl mutant of pea. Plant Physiol 110(1):329–334. https://doi.org/10.1104/pp.110.1.329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci 176(6):709–714. https://doi.org/10.1016/j.plantsci.2009.02.011

    Article  CAS  Google Scholar 

  45. Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581(12):2273–2280. https://doi.org/10.1016/j.febslet.2007.04.043

    Article  CAS  PubMed  Google Scholar 

  46. Zocchi G, De Nisi P, Dell’Orto M, Espen L, Gallina PM (2007) Iron deficiency differently affects metabolic responses in soybean roots. J Exp Bot 58(5):993–1000. https://doi.org/10.1093/jxb/erl259

    Article  CAS  PubMed  Google Scholar 

  47. El-Baz FK, Mohamed AA, Aboul-Enein AM, Salama ZA (2004) Alteration in root exudates level during Fe-deficiency in two cucumber cultivars. Int J Agric Biol 6:45–48

    CAS  Google Scholar 

  48. Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283(1–2):155–162. https://doi.org/10.1007/s11104-005-3937-1

    Article  CAS  Google Scholar 

  49. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52(1):527–560. https://doi.org/10.1146/annurev.arplant.52.1.527

    Article  CAS  Google Scholar 

  50. Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9(3–7):695–713. https://doi.org/10.1080/01904168609363475

    Article  CAS  Google Scholar 

  51. Nwoke OC, Diels J, Abaidoo R, Nziguheba G, Merckx R (2008) Organic acids in the rhizosphere and root characteristics of soybean (Glycine max) and cowpea (Vigna unguiculata) in relation to phosphorus uptake in poor savanna soils. Afr J Biotechnol 7(20):3620–3627

    CAS  Google Scholar 

  52. Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165(2):261–274. https://doi.org/10.1007/BF00008069

    Article  CAS  Google Scholar 

  53. Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54(1):183–206. https://doi.org/10.1146/annurev.arplant.54.031902.135018

    Article  CAS  PubMed  Google Scholar 

  54. Ambler JE, Brown JC (1972) Iron-stress response in mixed and monocultures of soybean cultivars. Plant Physiol 50(6):675–678. https://doi.org/10.1104/pp.50.6.675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li L, Cheng X, Ling HQ (2004) Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Mol Biol 54(1):125–136. https://doi.org/10.1023/B:PLAN.0000028774.82782.16

    Article  PubMed  Google Scholar 

  56. Espen L, Dell’Orto M, De Nisi P, Zocchi G (2000) Metabolic responses in cucumber (Cucumis sativus L.) roots under Fe-deficiency: a 31P-nuclear magnetic resonance in vivo study. Planta 210(6):985–992. https://doi.org/10.1007/s004250050707

    Article  CAS  PubMed  Google Scholar 

  57. Zocchi G (2006) Metabolic changes in iron-stressed dicotyledonous plants. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 359–370. https://doi.org/10.1007/1-4020-4743-6_18

    Chapter  Google Scholar 

  58. Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85(2):315–317. https://doi.org/10.1104/pp.85.2.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fess TL, Kotcon JB, Benedito VA (2001) Crop breeding for low input agriculture: a sustainable response to feed a growing world population. Sustainability 3(10):1742–1772. https://doi.org/10.3390/su3101742

    Article  Google Scholar 

  60. Schmidt W (1999) Mechanisms and regulation of reduction based iron uptake in plants. New Phytol 141(1):1–26. https://doi.org/10.1046/j.1469-8137.1999.00331.x

    Article  CAS  Google Scholar 

  61. Dell’Orto M, Santi S, De Nisi P, Cesco S, Varanini Z, Zocchi G, Pinton R (2000) Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H + -ATPase activity. J Exp Bot 51(345):695–701. https://doi.org/10.1093/jexbot/51.345.695

    Article  PubMed  Google Scholar 

  62. Ohwaki Y, Sugahara K (1997) Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.). Plant Soil 189(1):49–55. https://doi.org/10.1023/A:1004271108351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the International Plant Nutrition Institute (IPNI), USA; University Grant Commission (UGC) of India, Post Graduate School ICAR-Indian Agricultural Research Institute, New Delhi and National Phytotron Facility (NPF), New Delhi for providing necessary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Karthik Raj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran Karthik Raj, Pandey, R.N., Singh, B. et al. Evidences for the use of 14C content in the root exudates as a novel application of radiocarbon labelling for screening iron deficiency tolerance of soybean (Glycine max (L.) Merr.) genotypes. J Radioanal Nucl Chem 326, 487–496 (2020). https://doi.org/10.1007/s10967-020-07284-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07284-5

Keywords

Navigation