Skip to main content
Log in

14C labelling as a reliable technique to screen soybean genotypes (Glycine max (L.) Merr.) for iron deficiency tolerance

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Fifty diverse soybean genotypes were screened for their ability to tolerate iron deficiency stress in a hydroponics experiment with low iron (−Fe) and sufficient iron (+Fe). We hypothesised that the genotypes with higher root exudation potential would exhibit higher chlorophyll content, dry matter production and Fe acquisition. The relative root exudation capacity of the genotypes was estimated with the help of 14C. As compared to iron inefficient and non responsive (FeINR) category under sufficient availability of iron (+Fe), the average 14C content in the total root exudates (14CTRE) was 39.4% higher in iron efficient and responsive (FeER) category. Further, higher exudation was observed under iron limiting (−Fe) stress condition and reported maximum in FeER (110.0% increase over FeINR under +Fe condition). The strength of positive correlation between 14C released with other parameters related to iron deficiency chlorosis suggested that 14C could be effectively used as a tracer for providing reliable estimate for better screening of iron efficient and responsive categories of soybean genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Froechlich DM, Fehr WR (1981) Agronomic performance of soybeans with differing levels of iron deficiency chlorosis on calcareous soil. Crop Sci 21:438–441

    Google Scholar 

  2. Kabir AH, Paltridge NG, Roessner U, Stangoulis JC (2013) Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. Physiol Plant 147(3):381–395

    CAS  PubMed  Google Scholar 

  3. Krishnapriya V, Pandey R (2016) Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop Pasture Sci 67(10):1096–1109

    CAS  Google Scholar 

  4. Pestana M, Correia PJ, de Varennes A, Abadía J, Faria EA (2001) Effectiveness of different foliar iron applications to control iron chlorosis in orange trees grown on a calcareous soil. J Plant Nutr 24(4–5):613–622

    CAS  Google Scholar 

  5. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. Environ Exp Bot 55(396):353–364

    CAS  Google Scholar 

  6. Mamidi S, Chikara S, Goos RJ, Hyten DL, Annam D et al (2011) Genomewide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genom 4:154–164

    CAS  Google Scholar 

  7. Mamidi S, Lee RK, Goos JR, McClean PE (2014) Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PLoS One 9(9):e107469

    PubMed  PubMed Central  Google Scholar 

  8. Kabir AH, Rahman MM, Haider SA, Paul NK (2015) Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). Environ Exp Bot 112:16–26

    CAS  Google Scholar 

  9. Zocchi G, De Nisi P, Dell’Orto M, Espen L, Gallina PM (2007) Iron deficiency differently affects metabolic responses in soybean roots. J Exp Bot 58(5):993–1000

    CAS  Google Scholar 

  10. Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Corrigendum: Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Front Plant Sci 10:420. https://doi.org/10.3389/fpls.2019.00420

    Article  PubMed  PubMed Central  Google Scholar 

  11. Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225

    CAS  Google Scholar 

  12. Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    CAS  PubMed  Google Scholar 

  13. Abadía J, López-Millán AF, Rombolà A, Abadía A (2002) Organic acids and Fe deficiency: a review. Plant Soil 241(1):75–86

    Google Scholar 

  14. Ramirez-Rodriguez V, Nieto-Jacobo MF, Lopez-Bucio J, Herrera-Estrella L (2001) Effect of citrate over production on iron nutrition in plants. In: Plant nutrition. Springer, Dordrecht, pp 44–45

    Google Scholar 

  15. Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20(1):33–40

    CAS  Google Scholar 

  16. Siminis CI, Stavrakakis MN (2008) Iron induces root and leaf ferric chelate reduction activity in grapevine rootstock 140 Ruggeri. Hortic Sci 43(3):685–690

    Google Scholar 

  17. Peiffer GA, King KE, Severin AJ, May GD, Cianzio SR, Lin SF, Lauter NC, Shoemaker RC (2012) Identification of candidate genes underlying an iron efficiency quantitative trait locus in soybean. Plant Physiol 158(4):1745–1754

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364

    CAS  PubMed  Google Scholar 

  19. Fourcroy P, Sisó-Terraza P, Sudre D, Savirón M, Reyt G, Gaymard F et al (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167

    CAS  PubMed  Google Scholar 

  20. Clemens S, Weber M (2016) The essential role of coumarin secretion for Fe acquisition from alkaline soil. Plant Signal Behav 11:e1114197

    PubMed  Google Scholar 

  21. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric chelate reductase for iron uptake from soils. Nature 397(6721):694

    CAS  Google Scholar 

  22. Nielsen TH, Veierskov B (1990) Regulation of carbon partitioning in source and sink leaf parts in sweet pepper (Capsicum annum L.) plants. Plant Physiol 93:637–641

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dieuaide-Noubhani M, Raffard G, Canioni P, Pradet A, Raymond P (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose. J Biol Chem 270:13147–13159

    CAS  PubMed  Google Scholar 

  24. Singh B, Sumedha Ahuja, Renu Pandey, Singhal RK (2014) 14CO2 labeling: a reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crop plants. J Radioanal Nucl Chem 302:1315–1320

    CAS  Google Scholar 

  25. Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141(2):674–684

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174(1):3–11

    CAS  Google Scholar 

  27. Pandey R, Krishnapriya V, Kishora N, Singh SB, Singh B (2013) Shoot labelling with 14CO2: a technique for assessing total root carbon exudation under phosphorus stress. Indian J Plant Physiol 18(3):250–262

    Google Scholar 

  28. Singh B, Pandey R (2003) Differences in root exudation among phosphorus-starved genotypes of maize and green gram and its relationship with phosphorus uptake. J Plant Nutr 26:2391–2401

    CAS  Google Scholar 

  29. Lin SF, Baumer JS, Ivers D, de Cianzo SR, Shoemaker RC (1998) Field and nutrient solution tests measure similar mechanisms controlling iron deficiency chlorosis in soybean. Crop Sci 38(1):254–259

    CAS  Google Scholar 

  30. Sugita R, Natsuko IK, Atsushi HYO, Keitaro T, Tomoko MN (2013) Non destructive real-time radioisotope imaging system for visualizing 14C-labeled chemicals supplied as CO2 in plants using Arabidopsis thaliana. J Radioanal Nucl Chem 298(2):1411–1416

    CAS  Google Scholar 

  31. López-Millán AF, Morales F, Gogorcena Y, Abadía A, Abadía J (2009) Metabolic responses in iron deficient tomato plants. J Plant Physiol 166(4):375–384

    PubMed  Google Scholar 

  32. Dong D, Peng X, Yan X (2004) Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Plant Physiol 122(2):190–199

    CAS  Google Scholar 

  33. Jackson ML (1973) Soil chemical analysis. Prentice Hall (India) Pvt. Ltd., New Delhi

    Google Scholar 

  34. Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57(12):1332–1334

    CAS  Google Scholar 

  35. Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP (2012) Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ 35(1):38–52

    CAS  PubMed  Google Scholar 

  36. Gahoonia TS, Ali R, Malhotra RS, Jahoor A, Rahman MM (2007) Variation in root morphological and physiological traits and nutrient uptake of chickpea genotypes. J Plant Nutr 30(6):829–841

    CAS  Google Scholar 

  37. El-Baz FK, Mohamed AA, Aboul-Enein AM, Salama ZA (2004) Alteration in root exudates level during Fe-deficiency in two cucumber cultivars. Int J Agric Biol 6:45–48

    CAS  Google Scholar 

  38. Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283(1–2):155–162

    CAS  Google Scholar 

  39. Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248(1–2):187–197

    CAS  Google Scholar 

  40. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Ann Rev Plant Biol 52(1):527–560

    CAS  Google Scholar 

  41. Hindt MN, Guerinot ML (1823) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta Mol Cell Res 9:1521–1530

    Google Scholar 

  42. Yadavalli V, Jolley CC, Malleda C, Thangaraj B, Fromme P, Subramanyam R (2012) Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii. PLoS One 7(4):e35084

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  44. Singh B, Seva Nayak D, Usha K (2010) Micronutrient deficiency: A global challenge and physiological approach to improve grain productivity under low zinc availability. In: Anjum NA (ed) Plant nutrition and abiotic stress tolerance II. Plant stress, vol 4 (Special Issue 2), pp 73–96

  45. Grusak MA, Pezeshgi S (1996) Shoot-to-root signal transmission regulates root Fe(III) reductase activity in the dgl mutant of pea. Plant Physiol 110(1):329–334

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ahmad Z, Gill MA, Qureshi RH (2001) Genotypic variations of phosphorus utilization efficiency of crops. J Plant Nutr 24(8):1149–1171

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Karthik Raj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 2 and 3.

Table 2 Average response of soybean genotypes (20 DAS) grown in iron sufficient (+Fe) and deficient (−Fe) nutrient cultures
Table 3 Relative dry matter production and 14C exudation by genotypes of soybean

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, K.K., Pandey, R.N., Singh, B. et al. 14C labelling as a reliable technique to screen soybean genotypes (Glycine max (L.) Merr.) for iron deficiency tolerance. J Radioanal Nucl Chem 322, 655–662 (2019). https://doi.org/10.1007/s10967-019-06708-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06708-1

Keywords

Navigation