Skip to main content
Log in

14CO2 labeling : a reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crop plants

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Root release of organic compounds and rate of the vascular sap flow are important for understanding the nutrient and the source-sink dynamics in plants, however, their determination is procedurally cumbersome and time consuming. We report here a simple method involving 14C labeling for rapid and reliable measurement of root exudates and vascular sap flow rate in a variable groundnut population developed through seed gamma irradiation using a cobalt source (60Co). An experimental hypothesis that a higher 14C level in the vascular sap would indicate a higher root release of carbon by the roots into the rhizosphere was verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singh B, Ahuja S, Singhal RK, Venu Babu P (2013) Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization. J Radioanal Nucl Chem 298:249–257. doi:10.1007/s10967-012-2342-5

    Article  CAS  Google Scholar 

  2. Sumedha A, Kumar M, Kumar P, Gupta VK, Singhal RK, Yadav A, Singh B (2014) Metabolic and biochemical changes caused by gamma irradiation in plants. J Radioanal Nucl Chem 300:199–212. doi:10.1007/s10967-014-2969-5

    Article  Google Scholar 

  3. Grusak MA (2002) Plant macro- and micronutrient minerals encyclopedia of life sciences. John Wiley & Sons, Ltd, Hoboken, pp 1–5

    Google Scholar 

  4. Hoffland E (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283:155–162

    Article  CAS  Google Scholar 

  5. Rico MI, Alvarez JM, Lopez-Valdivia LM, Novillo J, Obrador A (2009) Manganese and zinc in acidic agricultural soils from Central Spain, distribution and phytoavailability prediction with chemical extraction tests. Soil Sci 174:94–104

    Article  CAS  Google Scholar 

  6. Pati R, Mukhopadhyay D (2010) Forms of soil acidity and the distribution of DTPA-extractable micronutrients in some soils of West Bengal (India) Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010, Brisbane, Australia. Published on DVD pp 14–18

  7. Lyon GH, James CRS, Graham RD (2008) Exploiting micronutrient interaction to optimize biofortification programs, The Case for Inclusion of Selenium and Iodine in the Harvest Plus Program. Nutr Rev 62:247–252

    Article  Google Scholar 

  8. Singh B, Seva Nayak D, Usha K (2010) Micronutrient deficiency: A global challenge and physiological approach to improve grain productivity under low zinc availability. In: Anjum NA (Ed) Plant nutrition and abiotic stress tolerance II. Plant stress 4 (Special Issue 2), 73–96

  9. Singh B, Pandey R (2003) Differences in root exudation among phosphorus-starved genotypes of maize and green gram and its relationship with phosphorus uptake. J Plant Nutr 26:2391–2401

    Article  CAS  Google Scholar 

  10. Zaheer A, Gill MA, Qureshi RH (2001) Genotypic variations of phosphorus utilization efficiency of crops. J Plant Nutr 24:1149–1171

    Article  Google Scholar 

  11. Chandan K (2012) Physiological and molecular characterization of phytosiderophore mediated phytoremediation of heavy metals. Doctorate Dissertation, PG School, IARI, New Delhi

  12. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  13. Adegoke GO, Falade KO, Babalola OC (2004) Control of lipid oxidation and fungal spoilage of roasted peanut (Arachis hypogaea) using the spice Aframomum danielli. J Food Agri Environ 2:128–131

    Google Scholar 

  14. Pandey R, Krishnapriya V, Kishora N, Singh SB, Singh B (2013) Shoot labelling with 14CO2: a technique for assessing total root carbon exudation under phosphorus stress. Indian J Plant Physiol 18(3):250–262. doi:10.1007/s40502-013-0041-z

    Article  Google Scholar 

  15. Sumedha A, Singh B, Gupta VK, Singhal RK, Venu Babu P (2014) Very low dose gamma irradiation stimulates gaseous exchange and carboxylation efficiency, but inhibits vascular sap flow in Groundnut (Arachis hypogaea L.). Int J Radiation Biol 90:179–186. doi:10.3109/09553002.2014.868615

    Article  Google Scholar 

  16. Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Lowa State University Press, Ames, p 480

    Google Scholar 

  17. Ahuja S, Malhotra PK, Bhatia VK, Prasad R (2008) Statistical package for agricultural research (SPAR 2.0). J Ind Soc Agric Stat 61:65–74

    Google Scholar 

  18. Singh B, Datta PS (2010) Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiation Phys Chem 79:139–143

    Article  CAS  Google Scholar 

  19. Sakamoto W (2006) Protein degradation machineries in plastids. Ann Rev Plant Biol 57:599–621

    Article  CAS  Google Scholar 

  20. Baldık R, Aytekin H, Erer M (2011) Radioactivity measurements and radiation dose assessments due to natural radiation in Karabük (Turkey). J Radioanal Nucl Chem 289:297–302

    Article  Google Scholar 

  21. Singhal RK, Narayanan U, Rudran K (1998) Interception/deposition of airborne 85Sr, 131I, 137Cs by spinach, radish and beans plants in tropical rainfall. J Radioanal Nucl Chem 238(1–2):13–20

    Article  CAS  Google Scholar 

  22. Tufail M, Sabiha J, Akhtar N (2010) Assessment of annual effective dose from natural radioactivity intake through wheat grain produced in Faisalabad, Pakistan. J Radioanal Nucl Chem 283:585–590

    Article  CAS  Google Scholar 

  23. Singh B, Datta PS (2010) Effect of low dose gamma irradiation on plant and grain nutrition of wheat. Radiation Phys Chem 79:819–825

    Article  CAS  Google Scholar 

  24. Abo-hegazi AMT, Ragab AI, Moustafa AK (1988) Heritability and genetic variability for some characters of sunflower in M3 and M4 Generation after Irradiation. J Agric Res 13:3–15

    Google Scholar 

  25. Singh B, Ahuja S, Singhal RK, Venu Babu P (2014) Radiosensitivity studies and radio stability of ribulose-1,5 bis-carboxylase and gas exchange characteristics in Wheat, Garden Pea, Field Pea, Spinach, and Okra. Water Air Soil Pollut. doi:10.1007/s11270-013-1815-7

    Google Scholar 

  26. Zhang FS, Ma J, Cao YP (1997) Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raphanus satiuvs L.) and rape (Brassica napus L.) plants. Plant Soil 196:261–264

    Article  CAS  Google Scholar 

  27. Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    Article  CAS  Google Scholar 

  28. Gahoonia TS, Ali R, Malhotra RS, Jahoor A, Rahman MM (2007) Variation in root morphological and physiological traits and nutrient uptake of chickpea genotypes. J Plant Nutr 30:829–841

    Article  CAS  Google Scholar 

  29. Sugita R, Natsuko IK, Atsushi HYO, Keitaro T, Tomoko MN (2013) Nondestructive real-time radioisotope imaging system for visualizing 14C-labeled chemicals supplied as CO2 in plants using Arabidopsis thaliana. J Radioanal Nucl Chem 298(2):1411–1416

    Article  CAS  Google Scholar 

  30. Iida K (2013) Quantitative evaluation of the biosynthetic pathways leading to δ-aminolevulinic acid from the Shemin precursor glycine via the C5 pathway inArthrobacter hyalinus by analysis of 13C-labeled coproporphyrinogen III biosynthesized from [2-13C]glycine, [1-13C]acetate, and [2-13C]acetate using13C NMR spectroscopy. J Radioanal Nucl Chem 295(3):1819–1827

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Ahuja, S., Pandey, R. et al. 14CO2 labeling : a reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crop plants. J Radioanal Nucl Chem 302, 1315–1320 (2014). https://doi.org/10.1007/s10967-014-3531-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3531-1

Keywords

Navigation