Skip to main content
Log in

Complexation and enantioselectivity of sulfur/selenium-substituted uranyl-salophens with R/S-chiral lactone for RRS/SSR-3, 5-Dimethyl-2-(3-fluorophenyl)-2-morpholinols

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to explore the enantioselectivity of uranyl-salophens to chiral molecules, the newly designed receptors of Λ-type configuration sulfur/selenium-substituted uranyl-salophens with R/S-chiral δ-lactone were used to selectively coordinate and recognize a pair of enantiomers of RRS/SSR-3,5-dimethyl-2-(3-fluorophenyl)-2-morpholinols as guests based on the density functional theory calculations. The results indicated that the substituent effects of R/S-asymmetry sulfur/selenium-substituted uranyl-salophens significantly affected the structures and properties of coordination compounds, and the R-type receptors have higher enantioselectivity for the chiral guests than the S-type receptors both in vacuum and in solvents water, acetone and toluene except the R/S-selenium-substituted uranyl-salophen in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Senol ZM, Arslan DS, Simsek S (2019) Preparation and characterization of a novel diatomite-based composite and investigation of its adsorption properties for uranyl ions. J Radioanal Nucl Chem 321(3):791–803. https://doi.org/10.1007/s10967-019-06662-y

    Article  CAS  Google Scholar 

  2. Pan Q, Shamov GA, Schreckenbach G (2010) Binuclear uranium(VI) complexes with a "Pacman" expanded porphyrin: computational evidence for highly unusual bis-actinyl structures. Chem Eur J 16(7):2282–2290. https://doi.org/10.1002/chem.200902014

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Yang P, Li Q, Liu Y, Yin J (2019) Preparation of FeS@Fe3O4 core-shell magnetic nanoparticles and their application in uranyl ions removal from aqueous solution. J Radioanal Nucl Chem 321(2):499–510. https://doi.org/10.1007/s10967-019-06626-2

    Article  CAS  Google Scholar 

  4. Su D, Zheng X, Schreckenbach G, Pan Q (2015) Highly diverse bonding between two U3+ ions when ligated by a flexible polypyrrolic macrocycle. Organometallics 34(21):5225–5232. https://doi.org/10.1021/acs.organomet.5b00649

    Article  CAS  Google Scholar 

  5. Yao J, Zheng X, Pan Q, Schreckenbach G (2015) Highly valence-diversified binuclear uranium complexes of a schiff-base polypyrrolic macrocycle: prediction of unusual structures, electronic properties, and formation reactions. Inorg Chem 54(11):5438–5449. https://doi.org/10.1021/acs.inorgchem.5b00483

    Article  CAS  PubMed  Google Scholar 

  6. Kong X, Hu K, Wu Q, Mei L, Yu J, Chai Z, Nie C, Shi W (2019) In situ nitroso formation induced structural diversity of uranyl coordination polymers. Inorg Chem Front 6(3):775–785. https://doi.org/10.1039/c8qi01394b

    Article  CAS  Google Scholar 

  7. Mihalcea I, Henry N, Bousquet T, Volkringer C, Loiseau T (2012) Six-fold coordinated uranyl cations in extended coordination polymers. Cryst Growth Des 12(9):4641–4648. https://doi.org/10.1021/cg300853f

    Article  CAS  Google Scholar 

  8. Cozzi PG (2004) Metal-salen schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33(7):410–421. https://doi.org/10.1039/b307853c

    Article  CAS  PubMed  Google Scholar 

  9. Gao S, Lan W, Lin Y, Liao L, Nie C (2016) Molecular recognition of alpha, beta-unsaturated carbonyl compounds and chiral guests by uranyl-salophen receptors. Acta Phys Chim Sin 32(3):683–690. https://doi.org/10.3866/PKU.WHXB201512302

    Article  CAS  Google Scholar 

  10. Zhang G, Liao L, Lin Y, Yang M, Xiao X, Nie C (2013) Determination of fructose 1,6-bisphosphate using a double-receptor sandwich type fluorescence sensing method based on uranyl-salophen complexes. Anal Chim Acta 784:47–52. https://doi.org/10.1016/j.aca.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  11. Sun W, Dai L, Kong X, Mao Y, Wu Z, Liao L, Xiao X, Nie C (2020) Theoretical investigation into coordination and selectivity of uranyl-unilateral benzotriazole salophens (X=O/S) for R/S-triadimefons. Appl Organomet Chem 34:e5486. https://doi.org/10.1002/aoc.5486

    Article  CAS  Google Scholar 

  12. Bodo E, Ciavardini A, Dalla Cort A, Giannicchi I, Mihan FY, Fornarini S, Vasile S, Scuderi D, Piccirillo S (2014) Anion recognition by uranyl-salophen derivatives as probed by infrared multiple photon dissociation spectroscopy and Ab initio modeling. Chem-Eur J 20(37):11783–11792. https://doi.org/10.1002/chem.201402788

    Article  CAS  PubMed  Google Scholar 

  13. Lan W, Wang X, He L, Meng Y, Li J, Qiu B, Nie C (2018) Computational insight into asymmetric uranyl-salophen coordinated with α, β-unsaturated aldehydes and ketones. Appl Organomet Chem 32(3):e4137. https://doi.org/10.1002/aoc.4137

    Article  CAS  Google Scholar 

  14. Li X, Luo J, Lin Y, Liao L, Nie C (2016) Density functional theory investigation of nonsymmetrically substituted uranyl-salophen complexes. J Radioanal Nucl Chem 307(1):407–417. https://doi.org/10.1007/s10967-015-4326-8

    Article  CAS  Google Scholar 

  15. Dalla Cort A, De Bernardin P, Forte G, Mihan FY (2010) Metal-salophen-based receptors for anions. Chem Soc Rev 39(10):3863–3874. https://doi.org/10.1039/b926222a

    Article  CAS  PubMed  Google Scholar 

  16. Leoni L, Puttreddy R, Jurcek O, Mele A, Giannicchi I, Mihan FY, Rissanen K, Dalla Cort A (2016) Solution and solid-state studies on the halide binding affinity of perfluorophenyl-armed uranyl-salophen receptors enhanced by anion-pi interactions. Chem-Eur J 22(52):18714–18717. https://doi.org/10.1002/chem.201604313

    Article  CAS  PubMed  Google Scholar 

  17. Gangemi CMA, Rimkaite U, Cipria F, Sfrazzetto GT, Pappalardo A (2019) Enantiomeric recognition of alpha-aminoacids by a uranyl salen-bis-porphyrin complex. Front Chem 7:836. https://doi.org/10.3389/fchem.2019.00836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Romero-Guido C, Belo I, Ta TMN, Cao-Hoang L, Alchihab M, Gomes N, Thonart P, Teixeira JA, Destain J, Wache Y (2011) Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Appl Microbiol Biot 89(3):535–547. https://doi.org/10.1007/s00253-010-2945-0

    Article  CAS  Google Scholar 

  19. Zafrani Y, Sod-Moriah G, Yeffet D, Berliner A, Amir D, Marciano D, Elias S, Katalan S, Ashkenazi N, Madmon M, Gershonov E, Saphier S (2019) CF2H, a functional group-dependent hydrogen-bond donor: Is it a more or less lipophilic bioisostere of OH, SH, and CH3? J Med Chem 62(11):5628–5637. https://doi.org/10.1021/acs.jmedchem.9b00604

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Kong X, Wu Z, Lin Y, Liao L, Nie C (2018) Theoretical investigation into the coordination of R-/S-asymmetric uranyl-salophens containing six-membered ring lactam with cis-/trans-cyclohexylamines. Appl Organomet Chem 32(7):e4387. https://doi.org/10.1002/aoc.4387

    Article  CAS  Google Scholar 

  21. Habenschus MD, Nardini V, Dias LG, Rocha BA, Barbosa Junior F, de Oliveira ARM (2019) In vitro enantioselective study of the toxicokinetic effects of chiral fungicide tebuconazole in human liver microsomes. Ecotox Environ Safe 181:96–105. https://doi.org/10.1016/j.ecoenv.2019.05.071

    Article  CAS  Google Scholar 

  22. Carrao DB, dos Reis Gomes IC, Barbosa Junior F, de Oliveira ARM (2019) Evaluation of the enantioselective in vitro metabolism of the chiral pesticide fipronil employing a human model: Risk assessment through in vitro-in vivo correlation and prediction of toxicokinetic parameters. Food Chem Toxicol 123:225–232. https://doi.org/10.1016/j.fct.2018.10.060

    Article  CAS  PubMed  Google Scholar 

  23. Assaf G, Cansell G, Critcher D, Field S, Hayes S, Mathew S, Pettman A (2010) Application of a process friendly morpholine synthesis to (S, S)-Reboxetine. Tetrahedron Lett 51(38):5048–5051. https://doi.org/10.1016/j.tetlet.2010.07.106

    Article  CAS  Google Scholar 

  24. Kelley JL, Musso DL, Boswell GE, Soroko FE, Cooper BR (1996) (2S,3S,5R)-2-(3,5-difluorophenyl)-3,5-dimethyl-2-morpholinol: a novel antidepressant agent and selective inhibitor of norepinephrine uptake. J Med Chem 39(2):347–349. https://doi.org/10.1021/jm950630p

    Article  CAS  PubMed  Google Scholar 

  25. Xiao X, Yuan Y, Zhu N, Chen M (2007) Synthesis and crystal structure of chiral 2-aryl-3,5-dimethyl-2-morpholinol hydrochloride. Chin J Org Chem 27(8):989–993

    CAS  Google Scholar 

  26. Cao G, Hu A, Xiao X (2007) Asymmetric synthesis, crystal structure, and antidepressant activity of 2-aryl-3-alkyl-5-methyl-2-morpholinol hydrochlorides. Can J Chem 85(1):29–36. https://doi.org/10.1139/V06-184

    Article  CAS  Google Scholar 

  27. Lewis K, Nguyen NA, Papini D, Roberto F, Wells M (2008) Pharmaceutical compositions comprising (+)-(2S, 3S)-2-(3-chlorophenyl)-3, 5, 5-trimethyl-2-morpholinol. US Patent No. 11/719,409

  28. Kohn WJ, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140(4A):A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  29. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824. https://doi.org/10.1103/physrevb.33.8822

    Article  CAS  Google Scholar 

  30. Pan Q, Schreckenbach G, Arnold PL, Love JB (2011) Theoretical predictions of cofacial bis(actinyl) complexes of a stretched Schiff-base calixpyrrole ligand. Chem Commun 47(20):5720–5722. https://doi.org/10.1039/c1cc10979k

    Article  CAS  Google Scholar 

  31. Pan Q, Schreckenbach G (2010) Binuclear hexa- and pentavalent uranium complexes with a polypyrrolic ligand: A density functional study of water- and hydronium-induced reactions. Inorg Chem 49(14):6509–6517. https://doi.org/10.1021/ic100245a

    Article  CAS  PubMed  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  33. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  34. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101. https://doi.org/10.1063/1.2370993

    Article  CAS  PubMed  Google Scholar 

  35. Cao X, Dolg M (2006) Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coordin Chem Rev 250(7–8):900–910. https://doi.org/10.1016/j.ccr.2006.01.003

    Article  CAS  Google Scholar 

  36. Cao X, Dolg M, Stoll H (2003) Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J Chem Phys 118(2):487–496. https://doi.org/10.1063/1.1521431

    Article  CAS  Google Scholar 

  37. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem phys 72(1):650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  38. Biczysko M, Panek P, Scalmani G, Bloino J, Barone V (2010) Harmonic and anharmonic vibrational frequency calculations with the double-hybrid B2PLYP method: analytic second derivatives and benchmark studies. J Chem Theory Comput 6(7):2115–2125. https://doi.org/10.1021/ct100212p

    Article  CAS  PubMed  Google Scholar 

  39. Lemke KH, Seward TM (2013) Thermodynamic properties of carbon dioxide clusters by M06–2X and dispersion-corrected B2PLYP-D theory. Chem Phys Lett 573:19–23. https://doi.org/10.1016/j.cplett.2013.04.044

    Article  CAS  Google Scholar 

  40. Zheng J, Xu X, Truhlar DG (2011) Minimally augmented Karlsruhe basis sets. Theor Chem Acc 128(3):295–305. https://doi.org/10.1007/s00214-010-0846-z

    Article  CAS  Google Scholar 

  41. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305. https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382. https://doi.org/10.1021/ct0502763

    Article  CAS  PubMed  Google Scholar 

  43. Francl MM, Pietro WJ, Hehre WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77(7):3654–3665. https://doi.org/10.1063/1.444267

    Article  CAS  Google Scholar 

  44. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  45. Choudhary VK, Bhatt AK, Dash D, Sharma N (2019) DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin(IV) 2-chloridophenylacetohydroxamate complexes. J Comput Chem 40(27):2354–2363. https://doi.org/10.1002/jcc.26012

    Article  CAS  PubMed  Google Scholar 

  46. Lu T, Chen F (2013) Bond order analysis based on the laplacian of electron density in fuzzy overlap space. J Phys Chem A 117(14):3100–3108. https://doi.org/10.1021/jp4010345

    Article  CAS  PubMed  Google Scholar 

  47. Long L, Tao P, Li T, Wu S, Kong X, Liao L, Xiao X, Nie C (2019) Insight into coordination of uranyl ions with N, N-bis(2-five-membered heterocyclidene)-1,8-anthradiamines. Appl Organomet Chem 33(6):e4931. https://doi.org/10.1002/aoc.4931

    Article  CAS  Google Scholar 

  48. Pilme J (2017) Electron localization function from density components. J Comput Chem 38(4):204–210. https://doi.org/10.1002/jcc.24672

    Article  CAS  PubMed  Google Scholar 

  49. Dalla Cort A, Mandolini L, Palmieri G, Pasquini C, Schiaffino L (2003) Unprecedented detection of inherent chirality in uranyl–salophen complexes. Chem Commun 17:2178–2179. https://doi.org/10.1039/B306478F

    Article  Google Scholar 

  50. Dalla Cort A, Mandolini L, Pasquini C, Schiaffino L (2004) Isolation and epimerization kinetics of the first diastereoisomer of an inherently chiral uranyl−salophen complex. Org Lett 6(11):1697–1700. https://doi.org/10.1021/ol049769x

    Article  CAS  PubMed  Google Scholar 

  51. Dalla Cort A, Pasquini C, Schiaffino L (2007) Nonsymmetrically substituted uranyl-salophen receptors: New opportunities for molecular recognition and catalysis. Supramol Chem 19(1–2):79–87. https://doi.org/10.1080/10610270600977714

    Article  CAS  Google Scholar 

  52. Bartocci S, Sabate F, Mihan FY, Bosque R, Rodríguez L, Dalla Cort A (2017) Novel uranyl(vi) complexes incorporating ethynyl groups as potential halide chemosensors: an experimental and computational approach. Supramol Chem 29(11):922–927. https://doi.org/10.1080/10610278.2017.1361036

    Article  CAS  Google Scholar 

  53. Arunagiri C, Arivazhagan M, Subashini A (2011) Vibrational spectroscopic (FT-IR and FT-Raman), first-order hyperpolarizablity, HOMO, LUMO, NBO, Mulliken charges and structure determination of 2-bromo-4-chlorotoluene. Spectroc Acta Pt A Mol Biomol Spectr 79(5):1747–1756. https://doi.org/10.1016/j.saa.2011.05.050

    Article  CAS  Google Scholar 

  54. Ho J, Klamt A, Coote ML (2010) Comment on the correct use of continuum solvent models. J Phys Chem A 114(51):13442–13444. https://doi.org/10.1021/jp107136j

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to acknowledge the support of this work from National Natural Science Foundation of China, Grant/Award Numbers: 11275090 and 11475079; Authors also greatly acknowledge the high-performance computation center (HPCC) at University of South China for computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changming Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Nie, C., Sun, W. et al. Complexation and enantioselectivity of sulfur/selenium-substituted uranyl-salophens with R/S-chiral lactone for RRS/SSR-3, 5-Dimethyl-2-(3-fluorophenyl)-2-morpholinols. J Radioanal Nucl Chem 324, 993–1006 (2020). https://doi.org/10.1007/s10967-020-07137-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07137-1

Keywords

Navigation