Skip to main content
Log in

Spatial distribution of uranium and chemo-radiological assessment in Hamirpur district, Himachal Pradesh, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Monitoring of radioactivity in an environment is an important step towards establishing the baseline for environment protection. This work highlights the spatial distribution of uranium (U); assessment of physico-chemical parameters and radiological assessment in groundwater of Hamirpur district, HP, India. The concentration of U ranges from 0.15 to 18.92 μg l−1. High correlation of U is observed with TDS, Chloride and Nitrate. Major concentration of U is present along the NW–SE trend-line following the Siwalik in the areas where mineralisation is prevalent and is of geogenic source derived from granitic and volcanic rock fragments present in conglomerates. The water-quality-index indicates that the water is suitable for drinking purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from CGWB, 2013)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yadav AK, Sahoo SK, Mahapatra S, Kumar AV, Pandey G, Lenka P, Tripathi R (2014) Concentrations of Uranium in drinking water and cumulative, age-dependent radiation doses in four districts of Uttar Pradesh, India. Toxicol Environ Chem 96:192–200

    Article  CAS  Google Scholar 

  2. Duggal V, Sharma S (2017) Chemotoxicity and radiotoxicity risk assessment from exposure to Uranium in groundwater from western Haryana, India. Int J Pure Appl Phys 13:07–112

    Google Scholar 

  3. Saini K, Singh P, Bajwa BS (2016) Comparative statistical analysis of carcinogenic and non-carcinogenic effects of Uranium in groundwater samples from different regions of Punjab, India. Appl Radiat Isot 118:196–202

    Article  CAS  PubMed  Google Scholar 

  4. Kumar D, Singh A, Jha RK (2018) Spatial distribution of Uranium and basic water quality parameter in the capital of Bihar and consequent ingestion dose. Environ Sci Pollut Res 25(18):17901–17914

    Article  CAS  Google Scholar 

  5. Smedley P, Smith B, Abesser C, Lapworth D (2006) Uranium occurrence and behaviour in British groundwater. British Geological Survey Commissioned Report, CR/06/050 N. 60 pp

  6. Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB (2004) Depleted and natural Uranium: chemistry and toxicological effects. J Toxicol Environ Health 7(4):297–317

    Article  CAS  Google Scholar 

  7. Llobet JM, Sirvent JJ, Ortega A, Domingo JL (1991) Influence of chronic exposure to Uranium on male reproduction in mice. Toxicol Sci 16(4):821–829

    Article  CAS  Google Scholar 

  8. Vicente L, Quiros Y, Barriocanal F, Novoa J, Hernandez F, Morales A (2010) Nephrotoxicity of Uranium: pathophysiological, diagnostic and therapeutic perspectives. Toxicol Sci 118(2):324–347

    Article  CAS  Google Scholar 

  9. ATSDR (1999) Toxilogical profile for Uranium. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  10. USEPA (2011) United States environmental protection agency, edition of the drinking water standards and health advisories. Office of Water, Washington DC

    Google Scholar 

  11. WHO (2011) Guidelines for drinking water quality, vol 1, 4th edn. World Health Organisation, Geneva

    Google Scholar 

  12. AERB (Atomic Energy Regulatory Board) (2004) Drinking water specifications in India. Department of Atomic Energy, Govt. of India

  13. Cothern CR, Lappenbusch WL (1983) Occurrence of Uranium in drinking water in the US. Health Phys 45(1):89–99

    Article  CAS  PubMed  Google Scholar 

  14. Külahcı F, Bilici A (2019) Advances on identification and animated simulations of radioactivity risk levels after Fukushima Nuclear Power Plant accident (with a data bank): a critical review. J Radioanal Nucl Chem 321(1):1–30

    Article  CAS  Google Scholar 

  15. Keith LS, Faroon OM, Fowler BA (2007) Uranium. In: Berlin M, Zalups RK, Fowler BA (eds) Handbook on the toxicology of metals. Academic Press, Burlington, pp 880–903

    Google Scholar 

  16. Erenturk S, Yusan S, Turkozu DA, Camtakan Z, Olgen MK, Aslani MA, Aytas S, Isik MA (2014) Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey. J Radioanal Nucl Chem 300(3):919–931

    Article  CAS  Google Scholar 

  17. Wanty RB, Schoen R (1992) A review of the chemical processes affecting the mobility of radionuclides in natural waters, with applications. In: Gundersen LCS, Wanty RB (eds) Field studies of radon in rocks, soils, and water. CRC Press, Boca Raton, p 183

    Google Scholar 

  18. Murphy WM, Shock E (1999) Environmental aqueous geochemistry of actinides. Rev Mineral Geochem 38:221–253

    CAS  Google Scholar 

  19. Spalding RF, Sackett WM (1972) Uranium in runoff from the Gulf of Mexico distributive province: anomalous concentrations. Science 175(4022):629–631

    Article  CAS  PubMed  Google Scholar 

  20. Sharma T, Sharma A, Kaur I, Mahajan RK, Litoria PK, Sahoo SK, Bajwa BS (2019) Uranium distribution in groundwater and assessment of age dependent radiation dose in Amritsar, Gurdaspur and Pathankot districts of Punjab, India. Chemosphere 219:607–616

    Article  CAS  PubMed  Google Scholar 

  21. Külahcı F, Çiçek Ş (2019) On the determination of transportation, range and distribution characteristics of Uranium-238, Thorium-232 and Potassium-40: a critical review. Environ Earth Sci 78(24):721

    Article  CAS  Google Scholar 

  22. Kumar A, Karpe R, Rout S, Joshi V, Singhal RK, Ravi PM (2013) Spatial distribution and accumulation of 226 Ra, 228 Ra, 40 K and 137 Cs in bottom sediments of Mumbai Harbour Bay. J Radioanal Nucl Chem 295(2):835–839

    Article  CAS  Google Scholar 

  23. Singh P, Sahoo BK, Bajwa BS (2016) A study on Uranium and radon levels in drinking water sources of a mineralized zone of Himachal Pradesh, India. J Radioanal Nucl Chem 309(2):541–549

    CAS  Google Scholar 

  24. Bajwa BS, Kumar S, Singh S, Sahoo S, Tripathi R (2017) Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India. J Radiat Res Appl Sci 10:13–19

    Article  CAS  Google Scholar 

  25. Diwan V, Sar SK, Biswas S, Dewangan R, Baghel T (2019) Uranium in ground water of Rajnandgaon District of Central India. J Radioanal Nucl Chem 321(1):293–302

    Article  CAS  Google Scholar 

  26. Rani A, Singh S, Duggal V, Balaram V (2013) Uranium estimation in drinking water samples from some areas of Punjab and Himachal Pradesh. India using ICP-MS. Radiat Prot Dosim 157(1):146–151

    Article  CAS  Google Scholar 

  27. Singh B, Singh G, Sandhu AS, Singh S (1999) Uranium estimation in water samples collected from some areas of Himachal Pradesh, India. Radiat Meas 31:683–685

    Article  CAS  Google Scholar 

  28. Bajwa BS, Mahajan S, Singh H, Singh J, Singh S, Walia V, Virk HS (2005) A study of ground water radon concentrations in Punjab and Himachal Pradesh states, India. Indoor Built Environ 14:481–486

    Article  CAS  Google Scholar 

  29. Singh J, Singh H, Singh S, Bajwa BS (2008) Estimation of Uranium and radon concentration in some drinking water samples. Radiat Meas 43:523–526

    Article  CAS  Google Scholar 

  30. CGWB (Central Ground Water Board) (2013) Ground water information booklet, Hamirpur district, Himachal Pradesh. http://cgwb.gov.in/District_Profile/HP/Hamirpur.pdf. Accessed 15 July 2019

  31. Johnson NM, Stix J, Tauxe L, Cerveny PF, Tahirkheli RA (1985) Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji village, Pakistan. J Geol 93(1):27–40

    Article  Google Scholar 

  32. Kaul R (1993) Uranium mineralization in the Siwaliks of North Western Himalayan, India. J Geol Soc India 41:243–258

    CAS  Google Scholar 

  33. Kumaravel V, Sangode SJ, Kumar R, Siddaiah NS (2005) Magnetic polarity stratigraphy of Plio–Pleistocene Pinjor Formation (type locality), Siwalik Group, NW Himalaya, India. Curr Sci 88:1453–1461

    Google Scholar 

  34. Barndt J, Johnson NM, Johnson GD, Opdyke ND, Lindsay EH, Pilbeam D, Tahirkheli RAH (1978) The magnetic polarity stratigraphy and age of the Siwalik Group near Dhok Pathan village, Potwar Plateau, Pakistan. Earth Planet Sci Lett 41:355–364

    Article  Google Scholar 

  35. Sangode SJ, Kumar R (2003) Magneto stratigraphic correlation of the Late Cenozoic fluvial sequences from NW Himalaya, India. Curr Sci 84:1014–1024

    Google Scholar 

  36. Taras M, Greenberg A, Hoak R, Rand M (1971) Standard methods for the examination of water and wastewater, 13th edn. American Public Health Association, Washington

    Google Scholar 

  37. APHA (American Public Health Association), (2005) Standard methods for the examination of water and wastewater. APHA, Washington

    Google Scholar 

  38. Sahu SK, Maity S, Bhangare RC, Pandit GG, Sharma DN (2014) Determination of Uranium in ground water using different analytical techniques (No. BARC–2014/E/011). Bhabha Atomic Research Centre, Mumbai

    Google Scholar 

  39. Patra A, Mohapatra S, Sahoo S, Lenka P, Dubey J, Tripathi R, Puranik V (2013) Age-dependent dose and health risk due to intake of Uranium in drinking water from Jaduguda, India. Radiat Prot Dosim 155:210–216

    Article  CAS  Google Scholar 

  40. USEPA (United States Environmental Protection Agency) (1999) Cancer risk coefficients for environmental exposure to radionuclides. Federal Guidance Report No. 13, EPA 402-R-99-001

  41. Burk B (2019) Radiation risk in perspective. Position statement of the health physics society. https://hps.org/documents/radiationrisk.pdf, Accessed 5 Nov 2019

  42. World Bank (2017) The world development indicators, World BankPublications, Washington. https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=IN. Accessed 9 Dec 2019

  43. Sharma S, Kumar A, Mehra R, Mishra R (2017) Ingestion doses and hazard quotients due to intake of Uranium in drinking water from Udhampur District of Jammu and Kashmir State, India. Radioprotection 52:109–118

    Article  CAS  Google Scholar 

  44. Ajayi OS (2009) Measurement of activity concentrations of 40 K, 226 Ra and 232 Th for assessment of radiation hazards from soils of the southwestern region of Nigeria. Radiat Environ Biophys 48(3):323–332

    Article  CAS  PubMed  Google Scholar 

  45. Brown RM, McClelland NI, Deininger RA, Tozer RG (1970) Water quality index-do we dare? Water Sewage Works 117(10):339–343

    Google Scholar 

  46. Thakur N, Rishi M, Sharma DA, Keesari T (2018) Quality of water resources in Kullu Valley in Himachal Himalayas, India: perspective and prognosis. Appl Water Sci 8(1):20

    Article  CAS  Google Scholar 

  47. Hem JD (1991) Study and interpretation of the chemical characteristics of natural water: USGS professional paper book 2254. Scientific Publishers, Jodhpur

    Google Scholar 

  48. CPCB (Central Pollution Control Board) (2008) Guideline for water quality management. CPCB, Parivesh Bhawan, East Arjun Nagar, Delhi

  49. Wang Z, Lee SW, Kapoor P, Tebo BM, Giammar DE (2013) Uraninite oxidation and dissolution induced by manganese oxide: a redox reaction between two insoluble minerals. Geochim Cosmochim Acta 100:24–40

    Article  CAS  Google Scholar 

  50. BIS (Bureau of Indian Standards) (2012) Drinking water specification. Bureau of Indian standards, New Delhi (IS 10500)

  51. Kumar J, Malhotra R, Singh J, Singh S (1994) Radon measurements in dwellings in radioactive areas in Himachal Pradesh, India, using LR-115 plastic track detectors. Nucl Geophys 8(6):573–576

    CAS  Google Scholar 

  52. Sharma M, Sharma YC, Basu B, Gupta RK, Singh J (2000) Uranium mineralization in the sandstones of Dharamsala, Tikli area, Mandi-district, Himachal Pradesh, India. Curr Sci 78(7):897–899

    CAS  Google Scholar 

  53. Bonotto DM (2014) 222Rn, 220Rn and other dissolved gases in mineral waters of southeast Brazil. J Environ Radioact 132:21–30

    Article  CAS  PubMed  Google Scholar 

  54. Virk HS (1997) Uranium and radon surveys in western Himalaya. Curr Sci 73(6):536–538

    CAS  Google Scholar 

  55. Ortega X, Valles I, Serrano I (1996) Natural radioactivity in drinking water in Catalonia (Spain). Environ Int 22:347–354

    Article  Google Scholar 

  56. Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous Uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochem Cosmochim Acta 70:1379–1387

    Article  CAS  Google Scholar 

  57. Singh S, Rani A, Mahajan RK, Walia TPS (2003) Analysis of Uranium and its correlation with some physico-chemical properties of drinking water samples from Amritsar, Punjab. J Environ Monit 5:917–921

    Article  CAS  PubMed  Google Scholar 

  58. Selvi B, Vijayakumar B, Rana B, Ravi P (2016) Distribution of natural Uranium in groundwater around Kudankulam. Radiat Prot Environ 39:25

    Article  Google Scholar 

  59. Buro KR, Nolan BT, Rupert MG, Dubrovsky NM (2010) Nitrate in groundwater of the United States, 1991 − 2003. Environ Sci Technol 44(13):4988–4997

    Article  CAS  Google Scholar 

  60. Schnug E, Lottermoser BG (2013) Fertilizer-derived Uranium and its threat to human health. Environ Sci Technol 47(6):2433–2434

    Article  CAS  PubMed  Google Scholar 

  61. Nolan J, Weber KA (2015) Natural Uranium contamination in major US aquifers linked to nitrate. Environ Sci Technol Lett 2(8):215–220

    Article  CAS  Google Scholar 

  62. Magesh NS, Krishnakumar S, Chandrasekar N, Soundranayagam JP (2013) Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arab J Geosci 6(11):4179–4189

    Article  CAS  Google Scholar 

  63. Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Rajiv Ganthi R, Chidambaram S, Anandhan P, Manivannan R, Vasudevan S (2010) Application of water quality for groundwater quality assessment: Thirumanimuttar sub basin, Tamil Nadu, India. Environ Monit Assess 171(1–4):595–609

    Article  CAS  PubMed  Google Scholar 

  64. UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation) (2000) Sources and effects of ionizing radiation. United Nations, New York

    Book  Google Scholar 

Download references

Acknowledgements

Authors are grateful to BRNS (P/no-IITM/DAE-BRNS/DPS/188) for financing this research work. We are also thankful to IIT Mandi for providing lab facilities for conducting various experiments for the analysis of the samples. We thank the anonymous reviewers for their constructive comments which has shaped the manuscript in the better form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dericks P. Shukla.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, S., Shukla, D.P. & Halder, A. Spatial distribution of uranium and chemo-radiological assessment in Hamirpur district, Himachal Pradesh, India. J Radioanal Nucl Chem 324, 467–480 (2020). https://doi.org/10.1007/s10967-020-07088-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07088-7

Keywords

Navigation