Skip to main content
Log in

Sorption/desorption study of strontium on Ain Oussera soils around the Es-Salam reactor facility

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Four types of undisturbed soils around the Es-Salam reactor (Algeria) were used to evaluate the sorption behavior of strontium. The batch study was carried out under different experimental conditions. The kinetics were well fited by pseudosecond order model. Soils’s activation energies were 12.37, 14.76, 15.5 and 16.17 kJ mol−1, corresponding to ion-exchange-type sorption. Sorption was exothermic (ΔH° < 0), spontaneous (ΔG° < 0) and favorable at low temperature. Competing cations, particularly Ca2+ reduce the Sr adsorption. Desorption reaction showed a higher value of Sr in the easily extractible phase indicating a relative availability of the element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ammann L, Bergaya F, Lagaly G (2005) Determination of the cation exchange capacity of clays with copper complexes revised. Clay Miner 40(4):441–453

    Article  CAS  Google Scholar 

  2. Bergaya F, Vayer M (1997) CEC of clays: measurement by adsorption of a copper ethylenediamine complex. Appl Clay Sci 12(3):275–280

    Article  CAS  Google Scholar 

  3. Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30(6):769–783

    Article  CAS  PubMed  Google Scholar 

  4. Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods, vol 593–604. Springer, Dordrecht, pp 15–48

    Book  Google Scholar 

  5. Komárek M, Ettler V, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34(4):562–577

    Article  CAS  PubMed  Google Scholar 

  6. Bouzidi A, Souahi F, Hanini S (2010) Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions. J Hazard Mater 184(1–3):640–646

    Article  CAS  PubMed  Google Scholar 

  7. Bouzidi A, Ararem A, Imessaoudene D, Yabrir B (2015) Sequential extraction of Cs and Sr from Ain Oussera soils around Es-Salam research reactor facility. J Environ Sci 36:163–172

    Article  CAS  Google Scholar 

  8. Tsai SC, Wang TH, Li MH, Wei YY, Teng SP (2009) Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J Hazard Mater 161(2–3):854–861

    Article  CAS  PubMed  Google Scholar 

  9. Cornell RM (1993) Adsorption of cesium on minerals: a review. J Radioanal Nucl Chem 171(2):483–500

    Article  CAS  Google Scholar 

  10. Murali MS, Mathur JN (2002) Sorption characteristics of Am(III), Sr(II) and Cs(I) on bentonite and granite. J Radioanal Nucl Chem 254(1):129–136

    Article  CAS  Google Scholar 

  11. Cook D, Newcombe G, Sztajnbok P (2001) The application of PAC for MIB and Geosmin removal: predicting PAC doses in four raw waters. Water Res 35(5):1325–1333

    Article  CAS  PubMed  Google Scholar 

  12. Liu D, Hsu C, Chuang C (1995) Ion-exchange and sorption kinetics of cesium and strontium in soils. Appl Radiat Isot 46(9):839–846

    Article  Google Scholar 

  13. Mckay G (1998) Application of surface diffusion model to the adsorption of dyes on bagasse pith. Adsorption 4(3–4):361–372

    Article  CAS  Google Scholar 

  14. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689

    Article  CAS  PubMed  Google Scholar 

  15. Ho YS (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59(1):171–177

    Article  CAS  Google Scholar 

  16. Ho YS, Mckay G (2000) The kinetics of sorption of divalent metal ions onto Sphagnum moss peat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

  17. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  18. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124

    Article  CAS  Google Scholar 

  19. Shahwan T, Akar D, Eroglu AE (2005) Physicochemical characterization of the retardation of aqueous Cs+ ions by natural kaolinite and clinoptilolite minerals. J Colloid Interface Sci 285(1):9–17

    Article  CAS  PubMed  Google Scholar 

  20. Busenberg E, Plummer LN, Parker VB (1984) The solubility of strontianite (SrCO3) in CO2–H2O solutions between 2 and 91 °C, the association constants of SrHCO3 + (aq) and SrCO3(aq) between 5 and 80 °C, and an evaluation of the thermodynamic properties of Sr2+(aq) and SrCO3(aq) at 25 °C and 1 atm total pressure. Geochim Cosmochim Acta 48:2021–2035

    Article  CAS  Google Scholar 

  21. Reardon EJ, Armstrong DK (1987) Celestite (SrSO4(s)) solubility in water, seawater and NaCl solution. Geochim Cosmochim Acta 51(1):63–72

    Article  CAS  Google Scholar 

  22. Lee JO, Kang IM, Cho WJ (2010) Smectite alteration and its influence on the barrier properties of smectite clay for a repository. Appl Clay Sci 47(1–2):99–104

    Article  CAS  Google Scholar 

  23. Pais I, Benton Jones J (1997) Handbook of trace elements. St Lucie Press, Boca-Raton, pp 35–49

    Google Scholar 

  24. James RV, Rubin J (1986) Transport of chloride ion in a water-unsaturated soil exhibiting anion exclusion. Soil Sci Soc Am J 50:1142–1149

    Article  CAS  Google Scholar 

  25. Kokotov YA, Popova RF (1962) Sorption of long-lived fission products by soils and argillaceous minerals III: selectivity of soils and clays towards 90Sr under various conditions. Soviet Radiochem 4:292–297

    Google Scholar 

  26. Sposito G (1989) The chemistry of soils. Oxford University Press, New York, p 277

    Google Scholar 

  27. Cornell RM (1992) Adsorption behaviour of cesium on Marl. Clay Miner 27(3):363–371

    Article  CAS  Google Scholar 

  28. Basçetin E, Atun G (2006) Adsorption behavior of strontium on binary mineral mixtures of montmorillonite and kaolinite. Appl Radiat Isot 64(8):957–964

    Article  CAS  PubMed  Google Scholar 

  29. Xu D, Tan XL, Chen CL, Wang XK (2008) Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Appl Clay Sci 41(1–2):37–46

    Article  CAS  Google Scholar 

  30. Vejsada J, Hradil D, Randa Z, Jelinek E, Stulık K (2005) Adsorption of cesium on Czech smectite-rich clays—a comparative study. Appl Clay Sci 30(1):53–66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Algerian Atomic Energy Commission. The authors are grateful for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Bouzidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzidi, A., Imessaoudene, D., Ararem, A. et al. Sorption/desorption study of strontium on Ain Oussera soils around the Es-Salam reactor facility. J Radioanal Nucl Chem 319, 409–418 (2019). https://doi.org/10.1007/s10967-018-6345-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6345-8

Keywords

Navigation