Skip to main content
Log in

Poly(ethylene glycol methacrylate phosphate) grafting on silica shell formed on magnetite nanoparticles: applications to selective sequestration of f-element ions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The silica layer protected magnetite (Fe3O4) NPs were functionalized with phosphate group bearing monomer ethylene glycol methacrylate phosphate (EGMP) and its polymer (poly(EGMP) having affinity toward f-element ions. The polymerizable double bonds of EGMP anchored on silica coated magnetite NPs were used to grow poly(EGMP) chains by γ-rays induced polymerization. It was observed in the extraction studies that Pu4+ ions sorbed preferentially in Fe3O4@SiO2-EGMP NPs over UO22+ ions from 3 mol L−1 HNO3. Contrary to this, Fe3O4@SiO2-poly(EGMP) NPs did not exhibit significant selectivity toward UO22+ and Pu4+ ions under similar chemical conditions. Indicating a multiple ligating groups coordination requirement for the binding of UO22+ ions with phosphate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Munnik P, de Jongh PE, de Jong KP (2015) Recent developments in the synthesis of supported catalysts. Chem Rev 115:6687–6718

    Article  CAS  Google Scholar 

  2. Tang S, Zhang H, Lee HK (2015) Advances in sample extraction. Anal Chem 88:228–249

    Article  Google Scholar 

  3. Bai F, Ye G, Chen G et al (2013) New macrocyclic ligand incorporated organosilicas: co-condensation synthesis, characterization and separation of strontium in simulated high level liquid waste. React Funct Polym 73:228–236

    Article  CAS  Google Scholar 

  4. Alexandratos SD (2007) New polymer-supported ion-complexing agents: design, preparation and metal ion affinities of immobilized ligands. J Hazard Mater 139:467–470

    Article  CAS  Google Scholar 

  5. Grate JW, Egorov OB, O’Hara MJ, DeVol TA (2008) Radionuclide sensors for environmental monitoring: from flow injection solid-phase absorptiometry to equilibration-based preconcentrating minicolumn sensors with radiometric detection. Chem Rev 108:543–562

    Article  CAS  Google Scholar 

  6. Alexandratos SD, Crick DW (1996) Polymer-supported reagents: application to separation science. Ind Eng Chem Res 35:635–644

    Article  CAS  Google Scholar 

  7. Nguyen T-D, Dinh C-T, Do T-O (2015) Tailoring the assembly, interfaces, and porosity of nanostructures toward enhanced catalytic activity. Chem Commun 51:624–635. https://doi.org/10.1039/C4CC05741D

    Article  Google Scholar 

  8. Xu L, Qi X, Li X et al (2016) Recent advances in applications of nanomaterials for sample preparation. Talanta 146:714–726

    Article  CAS  Google Scholar 

  9. Wu B, Zheng N (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8:168–197

    Article  Google Scholar 

  10. Wackerlig J, Schirhagl R (2015) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88:250–261

    Article  Google Scholar 

  11. Shwetharani R, Poojashree A, Balakrishna GR, Jyothi MS (2018) La activated high surface area titania float for the adsorption of Pb (ii) from aqueous media. New J Chem 42:1067–1077

    Article  Google Scholar 

  12. La DD, Thi HPN, Nguyen TA, Bhosale SV (2017) Effective removal of Pb(II) using a graphene@ternary oxides composite as an adsorbent in aqueous media. New J Chem 41:14627–14634

    Article  CAS  Google Scholar 

  13. Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon N Y 91:122–143

    Article  CAS  Google Scholar 

  14. Eigler S, Hirsch A (2014) Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew Chemie Int Ed 53:7720–7738

    Article  CAS  Google Scholar 

  15. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  16. Zhao G, Li J, Ren X et al (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  17. Romanchuk AY, Slesarev AS, Kalmykov SN et al (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15:2321–2327

    Article  CAS  Google Scholar 

  18. Chappa S, Singha Deb AK, Ali SM et al (2016) Change in the affinity of ethylene glycol methacrylate phosphate monomer and its polymer anchored on a graphene oxide platform toward uranium(VI) and plutonium(IV) ions. J Phys Chem B 120:2942–2950

    Article  CAS  Google Scholar 

  19. Saçmacı Ş, Saçmacı M, Kök C (2018) Grafting of glutathione to magnetic graphene oxide and application for the determination of As (III)/(V) in food samples via a zeta potential analyzer. New J, Chem

    Google Scholar 

  20. Wang X, Liu B, Lu Q, Qu Q (2014) Graphene-based materials: fabrication and application for adsorption in analytical chemistry. J Chromatogr A 1362:1–15

    Article  CAS  Google Scholar 

  21. Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H (2017) Highly efficient simultaneous adsorption of Cd (ii), Hg (ii) and As (iii) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: central composite design optimization. New J Chem 41:8905–8919

    Article  CAS  Google Scholar 

  22. Buck MR, Schaak RE (2013) Emerging strategies for the total synthesis of inorganic nanostructures. Angew Chemie Int Ed 52:6154–6178

    Article  CAS  Google Scholar 

  23. Li N-N, Kang T-F, Zhang J-J et al (2015) Fe3O4@ZrO 2 magnetic nanoparticles as a new electrode material for sensitive determination of organophosphorus agents. Anal Methods 7:5053–5059

    Article  CAS  Google Scholar 

  24. Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    Article  CAS  Google Scholar 

  25. Dai Y, Jin J, Zhou L et al (2017) Preparation of hollow SiO2 microspheres functionalized with amidoxime groups for highly efficient adsorption of U (VI) from aqueous solution. J Radioanal Nucl Chem 311:2029–2037

    Article  CAS  Google Scholar 

  26. Veliscek-Carolan J, Jolliffe KA, Hanley TL (2013) Selective sorption of actinides by titania nanoparticles covalently functionalized with simple organic ligands. ACS Appl Mater Interfaces 5:11984–11994

    Article  CAS  Google Scholar 

  27. Das R, Giri S, Muliwa AM, Maity A (2017) High-performance Hg(II) removal using thiol-functionalized polypyrrole (PPy/MAA) composite and effective catalytic activity of Hg(II)-adsorbed waste material. ACS Sustain Chem Eng 5:7524–7536

    Article  CAS  Google Scholar 

  28. Mu X, Qiao J, Qi L et al (2014) Poly (2-vinyl-4, 4-dimethylazlactone)-functionalized magnetic nanoparticles as carriers for enzyme immobilization and its application. ACS Appl Mater Interfaces 6:21346–21354

    Article  CAS  Google Scholar 

  29. Soozanipour A, Taheri-Kafrani A, Isfahani AL (2015) Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem Eng J 270:235–243

    Article  CAS  Google Scholar 

  30. Sharma RK, Dutta S, Sharma S et al (2016) Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem 18:3184–3209

    Article  CAS  Google Scholar 

  31. Baig RBN, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49:752–770

    Article  CAS  Google Scholar 

  32. Baeza A, Guillena G, Ramón DJ (2016) Magnetite and metal-impregnated magnetite catalysts in organic synthesis: a very old concept with new promising perspectives. ChemCatChem 8:49–67

    Article  CAS  Google Scholar 

  33. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393

    Article  CAS  Google Scholar 

  34. Sharma R, Agrawal VV, Srivastava AK et al (2013) Phase control of nanostructured iron oxide for application to biosensor. J Mater Chem B 1:464–474

    Article  CAS  Google Scholar 

  35. Nisticò R, Celi LR, Prevot AB et al (2018) Sustainable magnet-responsive nanomaterials for the removal of arsenic from contaminated water. J Hazard Mater 342:260–269

    Article  Google Scholar 

  36. Rathod PB, Pandey AK, Meena SS, Athawale AA (2016) Quaternary ammonium bearing hyper-crosslinked polymer encapsulation on Fe3O4 nanoparticles. RSC Adv 6:21317–21325

    Article  CAS  Google Scholar 

  37. Böhmer V, Dozol J-F, Grüttner C et al (2004) Separation of lanthanides and actinides using magnetic silica particles bearing covalently attached tetra-CMPO-calix [4] arenes. Org Biomol Chem 2:2327–2334

    Article  Google Scholar 

  38. Rutledge RD, Warner CL, Pittman JW et al (2010) Thiol−Ene induced diphosphonic acid functionalization of superparamagnetic iron oxide nanoparticles. Langmuir 26:12285–12292

    Article  CAS  Google Scholar 

  39. Zhang Q, Luan L, Feng S et al (2012) Using a bifunctional polymer for the functionalization of Fe3O4 nanoparticles. React Funct Polym 72:198–205

    Article  CAS  Google Scholar 

  40. Nuñez L, Buchholz BA, Vandegrift GF (1995) Waste remediation using in situ magnetically assisted chemical separation. Sep Sci Technol 30:1455–1471

    Article  Google Scholar 

  41. Ojha S, Chappa S, Mhatre AM, et al (2017) Actinides selective extractants coated magnetite nanoparticles for analytical applications. J Radioanal Nucl Chem 312:675–683

    Article  CAS  Google Scholar 

  42. Chavan V, Thekkethil V, Pandey AK et al (2014) Assembled diglycolamide for f-element ions sequestration at high acidity. React Funct Polym 74:52–57

    Article  CAS  Google Scholar 

  43. O’hara MJ, Carter JC, MacLellan JA et al (2011) Investigation of magnetic nanoparticles for the rapid extraction and assay of alpha-emitting radionuclides from urine: demonstration of a novel radiobioassay method. Health Phys 101:196–208

    Article  Google Scholar 

  44. Urbanova V, Magro M, Gedanken A et al (2014) Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem Mater 26:6653–6673

    Article  CAS  Google Scholar 

  45. Kurzhals S, Zirbs R, Reimhult E (2015) Synthesis and magneto-thermal actuation of iron oxide core—PNIPAM shell nanoparticles. ACS Appl Mater Interfaces 7:19342–19352

    Article  CAS  Google Scholar 

  46. Zhang H, McDowell RG, Martin LR, Qiang Y (2016) Selective extraction of heavy and light lanthanides from aqueous solution by advanced magnetic nanosorbents. ACS Appl Mater Interfaces 8:9523–9531

    Article  CAS  Google Scholar 

  47. Mutin PH, Guerrero G, Vioux A (2005) Hybrid materials from organophosphorus coupling molecules. J Mater Chem 15:3761–3768

    Article  CAS  Google Scholar 

  48. Chappa S, Das S, Debnath AK, et al (2016) Spacer monomer in polymer chain influencing affinity of ethylene glycol methacrylate phosphate toward UO2 2+ and Pu4+ Ions. Ind Eng Chem Res 55:8992–9002

    Article  CAS  Google Scholar 

  49. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144

    Article  Google Scholar 

  50. Arsalani N (2010) Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. eXPRESS Polym Lett 4:329–338. https://doi.org/10.3144/expresspolymlett.2010.42

    Article  CAS  Google Scholar 

  51. Wang H, Shao X-Z, Tian Q, Ji Y-Q (2014) Synthesis of TBP-coated magnetic Pst-DVB particles for uranium separation. Nucl Sci Tech 25:22–26

    Google Scholar 

Download references

Acknowledgements

Shashikala Ojha is thankful to Dr Pradeepkumar K. S., Associate Director, HS&EG and Head RSSD, BARC and R.K. Gopalakrishnan, Head RHCS, RSSD, BARC for giving permission to carry out doctoral work and their keen interest in the present work. Authors are also thankful to Dr P. K. Pujari, Head Radiochemistry Division, BARC for his keen interest in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankararao Chappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, S., Chappa, S., Mhatre, A.M. et al. Poly(ethylene glycol methacrylate phosphate) grafting on silica shell formed on magnetite nanoparticles: applications to selective sequestration of f-element ions. J Radioanal Nucl Chem 318, 1171–1179 (2018). https://doi.org/10.1007/s10967-018-6228-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6228-z

Keywords

Navigation