Skip to main content
Log in

Preparation of hollow SiO2 microspheres functionalized with amidoxime groups for highly efficient adsorption of U(VI) from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The amidoxime-functionalized hollow SiO2 microspheres (HSA) were prepared for highly efficient U(VI) adsorption. Results showed that amidoxime modification could improve both sorption capacity and sorption selectivity for U(VI), however, excess functionalization might block the mesopores and thus restricting U(VI) sorption. The maximum U(VI) sorption capacity was 109.6 mg/g for HSA15 at 298 K and pH 5.0. The U(VI) sorption isotherms could be described by Langmuir model; whereas the sorption kinetics fitted well with the pseudo-second-order equation, indicating of monolayer chemisorption mechanism. The HSA sorbents could be efficiently regenerated by 0.6 M HNO3 and reused for several sorption–desorption cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sprynskyy M, Kovalchuk I, Buszewski B (2010) The separation of uranium ions by natural and modified diatomite from aqueous solution. J Hazard Mater 181:700–707

    Article  CAS  Google Scholar 

  2. Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17

    Article  CAS  Google Scholar 

  3. Heshmati H, Torabmostaedi M, Gilani HG, Heydari A (2015) Kinetic, isotherm, and thermodynamic investigations of uranium(VI) adsorption on synthesized ion-exchange chelating resin and prediction with an artificial neural network. Desalin Water Treat 55:1076–1087

    Article  CAS  Google Scholar 

  4. Sun Y, Yang S, Sheng G, Guo Z, Tan X, Xu J, Wang X (2012) Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina. Sep Purif Technol 83:196–203

    Article  CAS  Google Scholar 

  5. Fazliismail A, Yim MS (2015) Investigation of activated carbon adsorbent electrode for electrosorption-based urnium extraction from seawater. Nucl Eng Technol 47:579–587

    Article  Google Scholar 

  6. Mahfouz MG, Galhoum AA, Gomaa NA, Abdel-Rehem SS, Atia AA, Vincent T, Guiba E (2015) Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: euilibrium and kinetic studies. Chem Eng J 262:198–209

    Article  CAS  Google Scholar 

  7. Villalobos-Rodriguez R, Montero-Cabreraa ME, Esparza-Ponce HE, Herrera-Peraza EF, Ballinas-Casarrubias ML (2012) Uranium removal from water using cellulose triacetate membranes added with activated carbon. Appl Radiat Isot 70:872–881

    Article  CAS  Google Scholar 

  8. Vivero-Escoto JL, Carboni M, Abney CW, Krafft KE, Lin W (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Micropor Mesopor Mat 180:22–31

    Article  CAS  Google Scholar 

  9. Dudarko OA, Gunathilake C, Wickramaratne NP, Sliesarenko VV, Zub YL, Górka J, Dai S, Jaroniec M (2015) Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Colloid Surf A 482:1–8

    Article  CAS  Google Scholar 

  10. El-Toni AM, Habila MA, Ibrahim MA, Labis JP, ALOthman ZA (2014) Simple and facile synthesis of amino functionalized hollow core–mesoporous shell silica spheres using anionic surfactant for Pb(II), Cd(II), and Zn(II) adsorption and recovery. Chem Eng J 251:441–451

    Article  CAS  Google Scholar 

  11. Hakami O, Zhang Y, Banks CJ (2012) Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res 46:3913–3922

    Article  CAS  Google Scholar 

  12. Emadi M, Shams E (2010) Immobilization of thiadiazole derivatives on magnetite mesoporous silica shell nanoparticles in application to heavy metal removal from biological samples. AIP Conf Proc 1311:127–134

    Article  CAS  Google Scholar 

  13. Kim J, Tsouris C, Oyola Y, Janke CJ, Mayes RT, Dai S, Gill G, Kuo L, Wood J, Choe K, Schneider EA, Lindner H (2014) Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind Eng Chem Res 53:6076–6083

    Article  CAS  Google Scholar 

  14. Lindner H, Schneider E (2015) Review of cost estimates for uranium recovery from seawater. Energy Econ 49:9–22

    Article  Google Scholar 

  15. Zhao YG, Li JX, Zhang SW, Shao D (2013) Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxide composites. RSC Adv 3:18952–18959

    Article  CAS  Google Scholar 

  16. Guo W, Wang J, Lee S, Dong F, Park SS, Ha C (2010) A general pH-responsive supramolecular nanovalve based on mesoporous organosilica hollow nanospheres. Chem Eur J 16:8641–8646

    Article  CAS  Google Scholar 

  17. Kuang SP, Wang ZZ, Liu J, Wu ZC (2013) Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions. J Hazard Mater 260:210–219

    Article  CAS  Google Scholar 

  18. Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42–48

    Article  CAS  Google Scholar 

  19. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  20. Zhou L, Zou H, Wang Y, Huang Z, Wang Y, Luo T, Liu Z, Adesina AA (2016) Adsorption of uranium(VI) from aqueous solution using magnetic carboxymethyl chitosan nano-particles functionalized with ethylenediamine. J Radioanal Nucl Chem 308:935–946

    Article  CAS  Google Scholar 

  21. Das S, Pandey AK, Athawale AA, Manchanda VK (2009) Exchanges of uranium(VI) species in amidoxime-funtionalized sorbents. J Phys Chem B 113:6328–6335

    Article  CAS  Google Scholar 

  22. Yuan LY, Liu YL, Shi WQ, Lv YL, Lan JH, Zhao YL, Chai ZF (2011) High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Trans 40:7446–7453

    Article  CAS  Google Scholar 

  23. Rezaei A, Khani H, Masteri-Farahani M, Rofouei MK (2012) A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 4:4107–4114

    Article  CAS  Google Scholar 

  24. Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215:208–216

    Article  Google Scholar 

  25. Venkatesan K, Sukumaran V, Antony M, Vasudeva Rao P (2004) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260:443–450

    Article  CAS  Google Scholar 

  26. Bryant DE, Stewart DI, Kee TP, Barton CS (2003) Development of a functionalized polymer-coated silica for the removal of uranium from groundwater. Environ Sci Technol 37:4011–4016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Fund Program (21366001; 21667001), the International Scientific and Technological Cooperation Projects (2015DFR61020), the Key Research and Development Program of Jiangxi Province (20161BBF60059), the Scientific Research Project from Education Department of Jiangxi Province (GJJ17380), and the Scientific and Technological Cooperation Project of Jiangxi Province (20161BBH80046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jieyun Jin or Limin Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Jin, J., Zhou, L. et al. Preparation of hollow SiO2 microspheres functionalized with amidoxime groups for highly efficient adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 311, 2029–2037 (2017). https://doi.org/10.1007/s10967-016-5128-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5128-3

Keywords

Navigation