Skip to main content
Log in

Remediation of 137Cs radionuclide in nuclear waste effluents by polymer composite: adsorption kinetics, isotherms and gamma irradiation studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Polypyrrole is incorporated with activated carbon in large size dopant solution and investigated for 137Cs removal studies. Adsorption experiments showed optimum conditions within 240 min contact time, pH 6, 0.2 g adsorbent and ≤ 100 mg/l adsorbate dose, respectively, while the kinetic data followed pseudo-first-order model. Isotherm data were reproducible by the Langmuir isotherm yielding 23 mg/g maximum sorption capacity. Regeneration of adsorbent was attempted and indicated promising results within three cycles. The surface behavior has also been examined and revealed a well-ordered structure under gamma irradiation. This is a cheap adsorbent to consider and has also proven to possess higher sorption capacity than most highly-cost inorganic materials in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eroglu H, Yapici S, Nuhoglu C, Varoglu E (2009) Biosorption of Ga-67 radionuclides from aqueous solutions onto waste pomace of an olive oil factory. J Hazard Mater 172:729–738

    Article  CAS  PubMed  Google Scholar 

  2. Yang HM, Hwang KS, Park CW, Lee KW (2017) Sodium-copper hexacyanoferrate-functionalized magnetic nanoclusters for the highly efficient magnetic removal of radioactive caesium from seawater. Water Res 125:81–90

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, Chen G-R, Lee D-J, Kawamoto T, Tanaka H, Chen M-L, Luo Y-K (2014) Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 160:142–149

    Article  CAS  PubMed  Google Scholar 

  4. Borai E, Harjula R, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172(1):416–422

    Article  CAS  PubMed  Google Scholar 

  5. Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297(1):9–18

    Article  CAS  Google Scholar 

  6. Vipin AK, Ling S, Fugetsu B (2016) Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous Mesoporous Mater 224:84–88

    Article  CAS  Google Scholar 

  7. Ofomaja AE, Pholosi A, Naidoo EB (2014) Kinetics and competitive modelling of cesium biosorption onto iron(III) hexacyanoferrate modified pine cone powder. Int Biodeterior Biodegrad 92:71–78

    Article  CAS  Google Scholar 

  8. Pavel CC, Popa K (2014) Investigations on the ion exchange process of Cs+ and Sr2+ cations by ETS materials. Chem Eng J 245:288–294

    Article  CAS  Google Scholar 

  9. Fang X-H, Fang F, Lu C-H, Zheng L (2017) Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites. Nucl Eng Technol 49(3):556–561

    Article  CAS  Google Scholar 

  10. Leng Y, Ye G, Xu J, Wei J, Wang J, Chen J (2013) Synthesis of new silica gel adsorbent anchored with macrocyclic receptors for specific recognition of cesium cation. J Sol-Gel Sci Technol 66(3):413–421

    Article  CAS  Google Scholar 

  11. Lv K, Xiong L-P, Luo Y-M (2013) Ion exchange properties of cesium ion sieve based on zirconium molybdopyrophosphate. Colloid Surf A 433:37–46

    Article  CAS  Google Scholar 

  12. Sheha R, El-Khouly S (2013) Adsorption and diffusion of cesium ions in zirconium(IV) iodomolybdate exchanger. Chem Eng Res Des 91:942–954

    Article  CAS  Google Scholar 

  13. Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas. J Mater Chem 22(35):18261

    Article  CAS  Google Scholar 

  14. Valsala T, Roy SC, Shah JG, Gabriel J, Raj K, Venugopal V (2009) Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. J Hazard Mater 166(2):1148–1153

    Article  CAS  PubMed  Google Scholar 

  15. Yıldız B, Erten HN, Kış M (2011) The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal Nucl Chem 288(2):475–483

    Article  CAS  Google Scholar 

  16. Bayülken S, Bascetin E, Güclü K, Apak R (2011) Investigation and modeling of cesium(I) adsorption by Turkish clays: bentonite, zeolite, sepiolite, and kaolinite. Environ Prog Sustain Energy 30(1):70–80

    Article  CAS  Google Scholar 

  17. Kim CK, Kong JY, Chun BS, Park JW (2013) Radioactive removal by adsorption on Yesan clay and zeolite. Environ Earth Sci 68(8):2393–2398

    Article  CAS  Google Scholar 

  18. Long H, Wu P, Zhu N (2013) Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chem Eng J 225:237–244

    Article  CAS  Google Scholar 

  19. Munthali MW, Johan E, Aono H, Matsue N (2015) Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive contamination. J Asian Ceram Soc 3:245–250

    Article  Google Scholar 

  20. Zheng XM, Dou JF, Xia M, Ding AZ (2017) Ammonium-pillared montmorillonite-CoFe2O4 composite caged in calcium alginate beads for the removal of Cs+ from wastewater. Carbohydr Polym 167:306–316

    Article  CAS  PubMed  Google Scholar 

  21. Yang S, Shao D, Wang X, Hou G, Nagatsu M, Tan X, Ren X, Yu J (2015) Design of chitosan-grafted carbon nanotubes: evaluation of how the –OH functional group affects Cs+ adsorption. Marine Drugs 13:3116–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang S, Han C, Wang X, Nagatsu M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J Hazard Mater 274:46–52

    Article  CAS  PubMed  Google Scholar 

  23. Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on grapheme oxide-supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  CAS  PubMed  Google Scholar 

  24. Vincent C, Hertz A, Vincent T, Barré Y, Guibal E (2014) Immobilization of inorganic ion-exchanger into biopolymer foams—application to cesium sorption. Chem Eng J 236:202–211

    Article  CAS  Google Scholar 

  25. Dwivedi C, Pathak SK, Kumar M, Tripathi SC, Bajaj PN (2013) Potassium cobalthexacyanoferrate–gel beads for cesium removal: kinetics and sorption studies. RSC Adv 3(44):22102–22110

    Article  CAS  Google Scholar 

  26. Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents—a mini-review. Molecules 20(11):20582–20613

    Article  CAS  PubMed  Google Scholar 

  27. Xu Z, Dong J (2008) Synthesis, characterization and application of magnetic nanocomposites for the removal of heavy metals from industrial effluents. In: Shah V (ed) Emerging environmental technologies. Springer, Dordrecht

    Google Scholar 

  28. Lim CW, Song K, Kim SH (2012) Synthesis of PPy/silica nanocomposites with cratered surfaces and their application in heavy metal extraction. J Ind Eng Chem 18(1):24–28

    Article  CAS  Google Scholar 

  29. Bondar Y, Kuzenko S, Han DH, Cho HK (2014) Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric. Nanoscale Res Lett 9:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z (2015) Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A 3(29):14929–14941

    Article  CAS  Google Scholar 

  31. Chen Y, Wang S, Kang L, Kong L (2016) Enhanced adsorption of Ni(ii) using ATP/PPy/SDS composite. RSC Adv 6(14):11735–11741

    Article  CAS  Google Scholar 

  32. Yuasa M, Yamaguchi A, Itsuki H, Tanaka K, Yamamoto M, Oyaizu K (2005) Modifying carbon particles with polypyrrole for adsorption of cobalt ions as electrocatatytic site for oxygen reduction. Chem Mater 17(17):4278–4281

    Article  CAS  Google Scholar 

  33. Karthikeyan M, Satheeshkumar K, Elango K (2009) Removal of fluoride ions from aqueous solution by conducting polypyrrole. J Hazard Mater 167:300–305

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Bai R, Tong Y (2006) Selective adsorption behaviors of proteins on polypyrrole-based adsorbents. Sep Purif Technol 52(1):161–169

    Article  CAS  Google Scholar 

  35. Bai L, Li Z, Zhang Y, Wang T, Lu R, Zhou W, Gao H, Zhang S (2015) Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution. Chem Eng J 279:757–766

    Article  CAS  Google Scholar 

  36. Peng X, Zhang W, Gai L, Jiang H, Wang Y, Zhao L (2015) Dedoped Fe3O4/PPy nanocomposite with high anti-interfering ability for effective separation of Ag(I) from mixed metal-ion solution. Chem Eng J 280:197–205

    Article  CAS  Google Scholar 

  37. Olatunji MA, Khandaker MU, Amin YM, Mahmud HNME (2016) Cadmium-109 radioisotope adsorption onto polypyrrole coated sawdust of dryobalanops aromatic: kinetics and adsorption isotherms modelling. PLoS ONE 11(10):e0164119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karthikeyan M, Kumar KS, Elango K (2011) Batch sorption studies on the removal of fluoride ions from water using eco-friendly conducting polymer/bio-polymer composites. Desalination 267(1):49–56

    Article  CAS  Google Scholar 

  39. Xin Q, Fu J, Chen Z, Liu S, Yan Y, Zhang J, Xu Q (2015) Polypyrrole nanofibers as a high-efficient adsorbent for the removal of methyl orange from aqueous solution. J Environ Chem Eng 3:1637–1647

    Article  CAS  Google Scholar 

  40. Gao Y, Xu S, Yue Q, Wu Y, Gao B (2016) Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater. J Taiwan Inst Chem Eng 61:327–335

    Article  CAS  Google Scholar 

  41. Zabihi M, Ahmadpour A, Asl A (2009) Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J Hazard Mater 167:230–236

    Article  CAS  PubMed  Google Scholar 

  42. Ahn C, Kim Y, Woo S, Park J (2009) Removal of cadmium using acid-treated activated carbon in the presence of nonionic and/or anionic surfactants. Hydrometallurgy 99:209–213

    Article  CAS  Google Scholar 

  43. Chen JP, Wu S (2004) Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir 20(6):2233–2242

    Article  CAS  PubMed  Google Scholar 

  44. Olatunji MA, Khandaker MU, Mahmud HNME (2017) Investigation of cerium-139 radioisotope by conducting polymer composite. Polym Bull. https://doi.org/10.1007/s00289-017-2166-0

    Article  Google Scholar 

  45. Nassar NN (2012) Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can J Chem Eng 90(5):1231–1238

    Article  CAS  Google Scholar 

  46. Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC Press, Boca Raton

    Book  Google Scholar 

  47. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2012) Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 22(4):827–834

    Article  CAS  Google Scholar 

  48. Baş N, Yakar A, Bayramgil NP (2014) Removal of cobalt ions from aqueous solutions by using poly(N,N-dimethylaminopropyl methacrylamide/itaconic acid) hydrogels. J Appl Polym Sci 131(7):39569

    Article  Google Scholar 

  49. Ararem A, Bouras O, Arbaoui F (2011) Adsorption of caesium from aqueous solution on binary mixture of iron pillared layered montmorillonite and goethite. Chem Eng J 172(1):230–236

    Article  CAS  Google Scholar 

  50. Saberi R et al (2010) Adsorption characteristic of 137Cs from aqueous solution using PAN-based sodium titanosilicate composite. J Radioanal Nucl Chem 284:461–469

    Article  CAS  Google Scholar 

  51. Lee K-Y, Park M, Kim J, Oh M, Lee E-H, Kim K-W, Chung D-Y, Moon J-K (2016) Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution. Chemosphere 150:765–771

    Article  CAS  PubMed  Google Scholar 

  52. Ding D, Zhao Y, Yang S, Shi W, Zhang Z, Lei Z, Yang Y (2013) Adsorption of cesium from aqueous solution using agricultural residue-Walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res 47(7):2563–2571

    Article  CAS  PubMed  Google Scholar 

  53. Kim J-O, Lee S-M, Jeon C (2014) Adsorption characteristics of sericite for cesium ions from an aqueous solution. Chem Eng Res Des 92:368–374

    Article  CAS  Google Scholar 

  54. Tiwari D, Lalhmunsiama Choi SI, Lee SM (2014) Activated sericite: an efficient and effective natural clay material for attenuation of cesium from aquatic environment. Pedosphere 24(6):731–742

    Article  Google Scholar 

  55. Ayrault S, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Loos-Neskovic C (1998) Sorption mechanisms of cesium on Cu II2 FeII(CN)6 and Cu II3 [FeIII(CN)6]2 hexacyanoferrates and their relation to the crystalline structure. J Solid State Chem 141:475–485

    Article  CAS  Google Scholar 

  56. Sasaki T, Tanaka S (2012) Magnetic separation of cesium ion using Prussian blue modified magnetite. Chem Lett 41(1):32–34

    Article  CAS  Google Scholar 

  57. Krishna MB, Arunachalam J, Murali MS, Kumar S, Manchanda VK (2004) Performance of immobilized moss in the removal of 137Cs and 90Sr from actual low-level radioactive waste solutions. J Radioanal Nucl Chem 261(3):551–557

    Article  CAS  Google Scholar 

  58. Dahiya S, Tripathi R, Hegde A (2008) Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. J Hazard Mater 150:376–386

    Article  CAS  PubMed  Google Scholar 

  59. Maroto-Valer MM, Dranca I, Lupascu T, Nastas R (2004) Effect of adsorbate polarity on thermodesorption profiles from oxidized and metal-impregnated activated carbons. Carbon 42(12):2655–2659

    Article  CAS  Google Scholar 

  60. Yürüm A, Kocabas-Atakli Z, Sezen M, Semiar R, Yürüm Y (2014) Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic(V) removal from water. Chem Eng J 242:321–332

    Article  CAS  Google Scholar 

  61. Hong S, Cannon FS, Hou P, Byrne T, Nieto-Delgado C (2014) Sulfate removal from acid mine drainage using polypyrrole-grafted granular activated carbon. Carbon 73:51–60

    Article  CAS  Google Scholar 

  62. Scienza LC, Thompson GE (2001) Preparation and surface analysis of PPY/SDBS films on aluminum substrates. Polímeros 11(3):142–148

    Article  CAS  Google Scholar 

  63. Gao Y, Yang T, Xue J, Yan S, Zhou S, Wang Y, Kwok DTK, Chu PK, Zhang Y (2011) Radiation tolerance of Cu/W multilayered nanocomposites. J Nucl Mater 413(1):11–15

    Article  CAS  Google Scholar 

  64. Shahabi S, Najafi F, Majdabadi A, Hooshmand T, Nazarpak MH, Karimi B, Fatemi SM (2014) Effect of gamma irradiation on structural and biological properties of a PLGA-PEG-hydroxyapatite composite. Sci World J. https://doi.org/10.1155/2014/420616

    Article  Google Scholar 

  65. Ali Y, Kumar V, Sonkawade RG, Dhaliwal AS, Swart HC (2014) Gamma irradiation induced modifications in Au-polypyrrole nanocomposites: detailed Raman and X-ray studies. Vacuum 99:265–271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of the University of Malaya for the research (Grant No. PG027-2014A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Olatunji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olatunji, M.A., Khandaker, M.U., Mahmud, E.H.N.M. et al. Remediation of 137Cs radionuclide in nuclear waste effluents by polymer composite: adsorption kinetics, isotherms and gamma irradiation studies. J Radioanal Nucl Chem 316, 933–945 (2018). https://doi.org/10.1007/s10967-018-5875-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5875-4

Keywords

Navigation