Skip to main content
Log in

Investigation of cerium-139 radioisotope adsorption by conducting polymer composite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Cerium is an abundant rare earth element, with several stable and radioactive isotopes. Due to its numerous industrial applications, cerium radioisotopes are common components of liquid radioactive wastes. We investigated the removal of 139Ce radionuclide from wastewater by adsorption using composite of polypyrrole with wood sawdust, as a model for other cerium radioisotopes. The composite material was characterized by Brunauer–Emmett–Teller, field emission scanning electron microscopy and Fourier transform infrared spectroscopy techniques. Effects of pH, initial ion concentration and temperature on the uptake amount of 139Ce were investigated by batch adsorption. The results indicated that the uptake amount of cerium ion increased with a rise in pH to optimum value of 8.0 and contact time of 120 min. The pseudo-second-order kinetics was found to best fit the kinetic data, while the isotherm data showed a good fit to both the Langmuir and Freundlich models. The maximum sorption capacity of 6.57 ± 0.54 mg/g was estimated by the Langmuir model. Thermodynamic studies indicated that the adsorption is feasible, spontaneous and endothermic in nature. The radiation hardness of polymer composite was also investigated by exposing it to 60Co gamma source. Irradiation had practically no significant effect on the sorption performance of as-prepared polymer composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Olatunji MA, Khandaker MU, Amin YM, Mahmud HNME (2016) Cadmium–109 radioisotope adsorption onto polypyrrole coated sawdust of dryobalanops aromatic: kinetics and adsorption isotherms modelling. PLoS One. doi:10.1371/journal.pone.0164119

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eroglu H, Yapici S, Nuhogu C, Varoglu E (2009) Biosorption of Ga–67 radionuclides from aqueous solutions onto waste pomace of an olive oil factory. J Hazard Mater 172:729–738

    Article  CAS  PubMed  Google Scholar 

  3. Reinhardt K, Winkler H (2000) Cerium mischmetal, cerium alloys, and cerium compounds. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, London

    Book  Google Scholar 

  4. Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College, London, pp 6–11. ISBN 978-1-86094-299-0

    Book  Google Scholar 

  5. Audi G, Bersillon O, Blachot J, Wapstra AH (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729(1):3–128

    Article  CAS  Google Scholar 

  6. Emsley J (2011) Nature’s building blocks: An A–Z guide of the elements. Oxford University, Oxford. pp. 120–125. ISBN 978-0-19-960563-7

  7. Park Y, Lee YC, Shin WS, Choi SJ (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem Eng J 162(2):685–695

    Article  CAS  Google Scholar 

  8. Ali IM (2009) Sorption studies of 134Cs, 60Co and 152+154Eu on phosphoric acid activated silico antimonate crystals in high acidic media. Chem Eng J 155:580–585

    Article  CAS  Google Scholar 

  9. Babel S, Kurniawan TA (2003) Low–cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B97:219–243

    Article  Google Scholar 

  10. Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M, Forster CF (2003) Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochem 39:179–183

    Article  CAS  Google Scholar 

  11. Olorundare OF, Krause RWM, Okwonkwo JO, Mamba BB (2012) Potential application of activated carbon from maize tassel for the removal of heavy metals in water. Phys Chem Earth 50–52:104–110

    Article  Google Scholar 

  12. Achak M, Hafidi A, Ouazzani N, Sayadi S, Mandi L (2009) Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies. J Hazard Mater 166:117–125

    Article  CAS  PubMed  Google Scholar 

  13. Zong BY, Ho P, Wuang SC (2015) Synthesis and multi-applications of conducive magnetic stable polypyrrole dispersion with phase–convertible characteristics. Mater Chem Phys 149–150:156–163

    Article  CAS  Google Scholar 

  14. Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM (2015) Influence of adsorption parameters on cesium uptake from aqueous solution: a brief review. RSC Adv 5(88):71658–71683

    Article  CAS  Google Scholar 

  15. Seid L, Chouder D, Maouche N, Bakas I, Barka N (2014) Removal of Cd(II) and Co(II) ions from aqueous solutions by polypyrrole particles: Kinetics, equilibrium and thermodynamics. J Taiwan Inst Chem Eng 45:6

    Article  CAS  Google Scholar 

  16. Radja I, Djelad H, Morallon E, Benyoucef A (2015) Characterization and electrochemical properties of conducting nanocomposites synthesized from p–anisidine and aniline with titanium carbide by chemical oxidation method. Synth Met 202:25–32

    Article  CAS  Google Scholar 

  17. Chandra V, Kim KS (2011) Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem Commun 47:3942–3944

    Article  CAS  Google Scholar 

  18. Ghorbani M, Esfandian H, Taghipour N, Katal R (2010) Application of polyaniline and polypyrrole composites for paper mill wastewater treatment. Desalination 263:279–284

    Article  CAS  Google Scholar 

  19. Chen Y, Wang S, Kang L, Kong L (2016) Enhanced adsorption of Ni(II) using ATP/PPy/SDS composite. RSC Adv 6:11735–11741

    Article  CAS  Google Scholar 

  20. Bai L, Li Z, Zhang Y, Wang T, Lu R, Zhou W, Gao H, Zhang S (2015) Synthesis of water–dispersible graphene–modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution. Chem Eng J 279:757–766

    Article  CAS  Google Scholar 

  21. Karthikeyan M, Satheeshkumar KK, Elango KP (2009) Removal of fluoride ions from aqueous solution by conducting polypyrrole. J Hazard Mater 167:300–305

    Article  CAS  PubMed  Google Scholar 

  22. Mahmud HNME, Hosseini S, Yahya R (2014) Polymer adsorbent for the removal of lead ions from aqueous solution. Int J Tech Res Appl 11:04–08

    Google Scholar 

  23. Vijayaraghavan K, Balasubramanian R (2010) Single and binary bisorption of cerium and europium onto crab shell particles. Chem Eng J 163:337–343

    Article  CAS  Google Scholar 

  24. Dubey SS, Rao BS (2011) Removal of cerium ions from aqueous solution by hydrous ferric oxide. A radiotracer study. J Hazard Mater 186:1028–1032

    Article  CAS  PubMed  Google Scholar 

  25. Xin Q, Fu J, Chen Z, Liu S, Yan Y, Zhang J (2015) Polypyrrole nanofibers as a high–efficient adsorbent for the removal of methyl orange from aqueous solution. J Environ Chem Eng 3:1637–1647

    Article  CAS  Google Scholar 

  26. Ansari R, Pornahad A (2010) Removal of Ce(IV) ions from aqueous solutions using sawdust coated by electroactive polymers. Sep Sci Technol 45:16

    Article  CAS  Google Scholar 

  27. Subotic B, Bronic J (1986) Removal of cerium(III) species from solutions using granulated zeolites. J Radioanal Nucl Chem 102:2

    Article  Google Scholar 

  28. Omraei M, Esfandian H, Katal R, Ghorbani M (2011) Study of the removal of Zn(II) from aqueous solution using polypyrrole nanocomposite. Desalination 271:248–256

    Article  CAS  Google Scholar 

  29. Scienza LC, Thompson GE (2001) Preparation and surface analysis of PPY/SDBS films on aluminum substrates. Polímeros 11(3):142–148

    Article  CAS  Google Scholar 

  30. Chouli F, Radja I, Morallon E, Benyoucef A (2015) A novel conducting nanocomposite obtained by p–anisidine and aniline with titanium(IV)oxide nanoparticles: Synthesis, characterization, and electrochemical properties. Polym Compos. doi:10.1002/pc.23837

    Article  Google Scholar 

  31. Wahab MA, Jellali S, Jedidi N (2010) Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour Technol 101:5070–5075

    Article  CAS  PubMed  Google Scholar 

  32. Benykhlef S, Bekhoukh A, Berenguer R, Benyoucef A, Morallon E (2016) PANI–derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym Sci 294:1877–1885

    Article  CAS  Google Scholar 

  33. Chouli F, Zehhaf A, Benyoucef A (2014) Preparation and characterization of the new conducting composites obtained from 2–methylaniline and aniline with activated carbon by in situ intercalative oxidative polymerization. Macromol Res 22:26–31

    Article  CAS  Google Scholar 

  34. Jayamurgan P, Ponnuswamy V, Ashokan S, Mahalingam T (2013) The effect of dopant on structural, thermal and morphological properties of DBSA–doped polypyrrole. Iran Polym J 22:219–225

    Article  CAS  Google Scholar 

  35. Peng X, Zhang W, Gai L, Jiang H, Wang Y, Zhao L (2015) Dedoped Fe3O4/PPy nanocomposite with high anti–interfering ability for effective separation of Ag(I) from mixed metal–ion solution. Chem Eng J 280:197–205

    Article  CAS  Google Scholar 

  36. Li S, Lu X, Xue Y, Lei J, Zheng T, Wang C (2012) Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI) removal in aqueous solution. PLoS One 7(8):e43328. doi:10.1371/journal.pone.0043328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dahle JT, Arai Y (2015) Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health 12:1253–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bouchaud D, Balmain J, Bonnet G, Pedraza F (2012) pH–distribution of cerium species in aqueous systems. J Rare Earths 30:559–562

    Article  CAS  Google Scholar 

  39. Baş N, Yakar A, Bayramgil NP (2014) Removal of cobalt ions from aqueous solutions by using poly (N, N–dimethylaminopropyl methacrylamide/itaconic acid) hydrogels. J Appl Polym Sci 131:7

    Google Scholar 

  40. Kusaka E, Kamata Y, Fukunata Y, Nakahiro Y (1998) Effect of hydrolysed metal cations on the liquid–liquid extraction of silica fines with cetyltrimethylammonium chloride. Colloids Surf A 139:155–162

    Article  CAS  Google Scholar 

  41. Sert Ş, Kütahyali C, İnan S, Talip Z, Çetinkaya B, Eral M (2008) Biosorption of lanthanum and cerium from aqueous solutions by platanus orientalis leaf powder. Hydrometallurgy 90:13–18

    Article  CAS  Google Scholar 

  42. Ucun H, Bayhana YK, Kaya Y, Cakici A, Algur OF (2003) Biosorption of lead(II) from aqueous solution by cone biomass of pinus sylvestris. Desalination 154:233–238

    Article  CAS  Google Scholar 

  43. Gupta RK, Dubey SS, Singh RA (2004) Removal of mercury ions from aqueous solutions by composite of polyaniline with polystyrene. Sep Purif Technol 38:225–232

    Article  CAS  Google Scholar 

  44. Yiacoumi S, Tien C (1995) Modeling adsorption of metal ions from aqueous solutions: I. reaction–controlled cases. J Colloid Interface Sci 175(2):333–346

    Article  CAS  Google Scholar 

  45. Pignatello JJ (2011) Interactions of anthropogenic organic chemicals with natural organic matter and black carbon in environmental particles. In: Xing B, Senesi N, Huang PM (eds) Biophysico-chemical processes of anthropogenic organic compounds in environmental systems. John Wiley, Hoboken, pp 1–50

    Google Scholar 

  46. Ingole NW, Patil VN (2013) Cadmium removal from aqueous solution by modified low cost adsorbent(s): a state of the art. IJCSEIERD 3(4):17–26

    Google Scholar 

  47. Ismaiel AA, Aroua MK, Yusoff R (2013) Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water. Chem Eng J 225:306–331

    Article  CAS  Google Scholar 

  48. Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion–exchangers for the synthesis of metal ion sorbents: a mini–review. Molecules 20:20582–20613

    Article  CAS  PubMed  Google Scholar 

  49. Gupta RK, Shankar S (2004) Toxic waste removal from aqueous solutions by polyaniline: a radiotracer study. Adsorpt Sci Technol 22:485–496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research has been conducted under the University of Malaya Research Grant (Grant no. PG027A–2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mayeen Uddin Khandaker or H. N. M. Ekramul Mahmud.

Ethics declarations

Conflict of interest

Authors declare no conflict of financial or any other interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olatunji, M.A., Khandaker, M.U. & Mahmud, H.N.M.E. Investigation of cerium-139 radioisotope adsorption by conducting polymer composite. Polym. Bull. 75, 2491–2509 (2018). https://doi.org/10.1007/s00289-017-2166-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2166-0

Keywords

Navigation