Skip to main content
Log in

Bamboo (Acidosasa longiligula) shoot shell biochar: its potential application to isolation of uranium(VI) from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of uranium(VI) onto bamboo (Acidosasa longiligula) shoot shell biochar (ASBC) was investigated in batch experiments and the adsorbent was characterized by two-dimensional infrared correlation spectroscopy. The adsorption equilibrium data followed the Langmuir isotherm with maximum adsorption capacity of 32.3 mg g−1 at 298 K. The biochar exhibited a high selectivity for uranium(VI) against Na+ ions. Desorption rate of higher than 90% was obtained over three adsorption–desorption cycles. The adsorption mechanisms of uranium(VI) by ASBC involved surface complexation and cation–π interaction. Results suggested that ASBC was a low-cost and potential adsorbent for uranium(VI) isolation from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sun C, Zhu X, Meng X (2016) Post-Fukushima public acceptance on resuming the nuclear power program in China. Renew Sust Energy Rev 62:685–694

    Article  Google Scholar 

  2. Zhou S, Zhang X (2010) Nuclear energy development in China: a study of opportunities and challenges. Energy 35(11):4282–4288

    Article  Google Scholar 

  3. Lindner H, Schneider E (2015) Review of cost estimates for uranium recovery from seawater. Energy Econ 49:9–22

    Article  Google Scholar 

  4. Bai J, Yin X, Zhu Y, Fan F, Wu X, Tian W, Tan C, Zhang X, Wang Y, Cao S, Fan F, Qin Z, Guo J (2016) Selective uranium sorption from salt lake brines by amidoximated Saccharomyces cerevisiae. Chem Eng J 283:889–895

    Article  CAS  Google Scholar 

  5. Zheng M, Zhang Y, Liu X, Qi W, Kong F (2016) Progress and prospects of salt lake research in China. Acta Geol Sin Engl 90(4):1195–1235

    Article  Google Scholar 

  6. Fan F, Bai J, Fan F, Yin X, Wang Y, Tian W, Wu X, Qin Z (2014) Solvent extraction of uranium from aqueous solutions by α-benzoinoxime. J Radioanal Nucl Chem 300(3):1039–1043

    Article  CAS  Google Scholar 

  7. Chen Y, Wei Y, He L, Tang F (2016) Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin. J Chromatogr A 1466:37–41

    Article  CAS  Google Scholar 

  8. Burns AD, Abbasi P, Dreisinger DB (2016) Uranous sulfate precipitation as a novel hydrometallurgical process for uranium purification. Hydrometallurgy 163:49–54

    Article  CAS  Google Scholar 

  9. Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  10. Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2(3):1621–1634

    Article  CAS  Google Scholar 

  11. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168(2–3):1053–1058

    Article  CAS  Google Scholar 

  12. Lehmann J (2007) A handful of carbon. Nature 447(7141):143–144

    Article  CAS  Google Scholar 

  13. Novak J, Ro K, Ok YS, Sigua G, Spokas K, Uchimiya S, Bolan N (2016) Biochars multifunctional role as a novel technology in the agricultural, environmental, and industrial sectors. Chemosphere 142:1–3

    Article  CAS  Google Scholar 

  14. Hu H, Zhang J, Lu K, Tian Y (2015) Characterization of Acidosasa edulis shoot shell and its biosorption of copper ions from aqueous solution. J Environ Chem Eng 3(1):357–364

    Article  CAS  Google Scholar 

  15. Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manag 92(10):2504–2512

    Article  CAS  Google Scholar 

  16. Zhang Z, Cao X, Liang P, Liu Y (2012) Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295(2):1201–1208

    Article  Google Scholar 

  17. Yakout SM (2015) Effect of porosity and surface chemistry on the adsorption–desorption of uranium(VI) from aqueous solution and groundwater. J Radioanal Nucl Chem 308(2):555–565

    Article  Google Scholar 

  18. Ashry A, Bailey EH, Chenery SR, Young SD (2016) Kinetic study of time-dependent fixation of UVI on biochar. J Hazard Mater 320:55–66

    Article  CAS  Google Scholar 

  19. Hadjittofi L, Pashalidis I (2014) Uranium sorption from aqueous solutions by activated biochar fibres investigated by FTIR spectroscopy and batch experiments. J Radioanal Nucl Chem 304(2):897–904

    Article  Google Scholar 

  20. Noda I (2014) Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes. J Mol Struct 1069:23–49

    Article  CAS  Google Scholar 

  21. Noda I (1990) Two-dimensional infrared (2D IR) spectroscopy: theory and applications. Appl Spectrosc 44(4):550–561

    Article  CAS  Google Scholar 

  22. Al Lafi AG, Al Abdullah J (2015) Cesium and cobalt adsorption on synthetic nano manganese oxide: a two dimensional infra-red correlation spectroscopic investigation. J Mol Struct 1093:13–23

    Article  CAS  Google Scholar 

  23. Zhang J, Chen L, Yin H, Jin S, Liu F, Chen H (2017) Mechanism study of humic acid functional groups for Cr(VI) retention: two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis. Environ Pollut 225:86–92

    Article  CAS  Google Scholar 

  24. Hu H, Jiang B, Zhang J, Chen X (2015) Adsorption of perrhenate ion by bio-char produced from Acidosasa edulis shoot shell in aqueous solution. RSC Adv 5(127):104769–104778

    Article  CAS  Google Scholar 

  25. Mohan D, Rajput S, Singh VK, Steele PH, Pittman CU Jr (2011) Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J Hazard Mater 188(1–3):319–333

    Article  CAS  Google Scholar 

  26. Azargohar R, Nanda S, Kozinski JA, Dalai AK, Sutarto R (2014) Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125:90–100

    Article  CAS  Google Scholar 

  27. Fang Q, Chen B, Lin Y, Guan Y (2014) Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48(1):279–288

    Article  CAS  Google Scholar 

  28. Wang Z, Guo H, Shen F, Yang G, Zhang Y, Zeng Y, Wang L, Xiao H, Deng S (2015) Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4 +), nitrate (NO3 ), and phosphate (PO4 3−). Chemosphere 119:646–653

    Article  CAS  Google Scholar 

  29. Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276

    Article  CAS  Google Scholar 

  30. Belgacem A, Rebiai R, Hadoun H, Khemaissia S, Belmedani M (2014) The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environ Sci Pollut Res 21(1):684–694

    Article  CAS  Google Scholar 

  31. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134(39):16441–16446

    Article  CAS  Google Scholar 

  32. Noda I, Dowrey AE, Marcott C, Story GM, Ozaki Y (2000) Generalized two-dimensional correlation spectroscopy. Appl Spectrosc 54(7):236A–248A

    Article  CAS  Google Scholar 

  33. Tytłak A, Oleszczuk P, Dobrowolski R (2015) Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions. Environ Sci Pollut Res 22(8):5985–5994

    Article  Google Scholar 

  34. Hu H, Jiang B, Wu H, Zhang J, Chen X (2016) Bamboo (Acidosasa edulis) shoot shell biochar: its potential isolation and mechanism to perrhenate as a chemical surrogate for pertechnetate. J Environ Radioact 165:39–46

    Article  CAS  Google Scholar 

  35. Shen Z, Jin F, Wang F, McMillan O, Al-Tabbaa A (2015) Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Bioresour Technol 193:553–556

    Article  CAS  Google Scholar 

  36. Dong X, Ma LQ, Li Y (2011) Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J Hazard Mater 190(1–3):909–915

    Article  CAS  Google Scholar 

  37. Chen T, Zhou Z, Han R, Meng R, Wang H, Lu W (2015) Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism. Chemosphere 134:286–293

    Article  CAS  Google Scholar 

  38. Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46(3):854–862

    Article  CAS  Google Scholar 

  39. Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B (2013) Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res Int 20(1):358–368

    Article  CAS  Google Scholar 

  40. Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou Y, Zheng B, Cai X (2016) Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: performance and mechanism. RSC Adv 6(7):5223–5232

    Article  CAS  Google Scholar 

  41. Wang Z, Liu G, Zheng H, Li F, Ngo HH, Guo W, Liu C, Chen L, Xing B (2015) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317

    Article  CAS  Google Scholar 

  42. Deveci H, Kar Y (2013) Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. J Ind Eng Chem 19(1):190–196

    Article  CAS  Google Scholar 

  43. Gondhalekar SC, Shukla SR (2014) Equilibrium and kinetics study of uranium(VI) from aqueous solution by Citrus limetta peels. J Radioanal Nucl Chem 302(1):451–457

    Article  CAS  Google Scholar 

  44. Yang J, Volesky B (1999) Biosorption of uranium on Sargassum biomass. Water Res 33(15):3357–3363

    Article  CAS  Google Scholar 

  45. Ho YS, Mckay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

  46. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60

    Google Scholar 

  47. Li Y, Yang L, Liu X, Li N, Zhang L, Li Q, Yang Y, Duan Y, Zhang F (2015) Highly enhanced selectivity for the separation of rhenium and molybdenum using amino-functionalized magnetic Cu-ferrites. J Mater Sci 50(18):5960–5969

    Article  CAS  Google Scholar 

  48. Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645

    Article  CAS  Google Scholar 

  49. Kiran I, Akar T, Ozcan AS, Ozcan A, Tunali S (2006) Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions. Biochem Eng J 31(3):197–203

    Article  CAS  Google Scholar 

  50. Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresour Technol 101(14):5043–5053

    Article  CAS  Google Scholar 

  51. Yi Z, Yao J, Kuang Y, Chen H, Wang F, Xu J (2014) Uptake of hexavalent uranium from aqueous solutions using coconut husk activated carbon. Desalin Water Treat 57(4):1749–1755

    Article  Google Scholar 

  52. Zhu M, Liu R, Chai H, Yao J, Chen Y, Yi Z (2016) Hazelnut shell activated carbon: a potential adsorbent material for the decontamination of uranium(VI) from aqueous solutions. J Radioanal Nucl Chem 310(3):1147–1154

    Article  CAS  Google Scholar 

  53. Kütahyalı C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396(2–3):251–256

    Article  Google Scholar 

  54. Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2012) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297(1):9–18

    Article  Google Scholar 

  55. Morsy AMA, Hussein AEM (2011) Adsorption of uranium from crude phosphoric acid using activated carbon. J Radioanal Nucl Chem 288(2):341–346

    Article  CAS  Google Scholar 

  56. Dong L, Yang J, Mou Y, Sheng G, Wang L, Linghu W, Asiri AM, Alamry KA (2017) Effect of various environmental factors on the adsorption of U(VI) onto biochar derived from rice straw. J Radioanal Nucl Chem 314(1):377–386

    Article  CAS  Google Scholar 

  57. Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190(1–3):442–450

    Article  CAS  Google Scholar 

  58. Duranoğlu D, Trochimczuk AW, Beker U (2012) Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile–divinylbenzene copolymer. Chem Eng J 187:193–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Zhang, X., Wang, T. et al. Bamboo (Acidosasa longiligula) shoot shell biochar: its potential application to isolation of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 316, 349–362 (2018). https://doi.org/10.1007/s10967-018-5731-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5731-6

Keywords

Navigation