Skip to main content
Log in

Characterisation of nuclear fuel by spectroscopic evaluation of alpha autoradiographs

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

New methods for estimation of concentration and distribution of plutonium in (Th,Pu)O2 MOX fuel samples have been attempted by spectroscopic analysis of SSNTD based alpha images using UV–Vis spectrophotometry and photoluminescence spectroscopy. (Th,Pu)O2 MOX fuel samples having a large range of PuO2 concentration, were subjected to this study and found beneficial when compared with the conventional analysis of alpha autoradiographs. UV–Vis absorbance and photoluminescence of the alpha autoradiograph showed linear decrease proportionally to PuO2% in the fuel sample. Optical band gap was found to proportionally increase with PuO2% in the fuel sample which was revealed in UV–Vis spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Sinha RK, Kakodkar A (2006) Design and development of the AHWR—the Indian thoriumfuelled innovative nuclear reactor. Nucl Eng Des 236:683–700

    Article  CAS  Google Scholar 

  2. Somayajulu PS, Sengupta A, Karande AK, Malav R, Das DK, Afzal M (2016) Quality control of (Th, Pu)O2 fuel pellet obtained by coated agglomerate pelletization. J Radioannal Nucl Chem 308:495–503

    Article  CAS  Google Scholar 

  3. Sarkar A, Alamelu D, Aggarwal SK (2009) Laser-induced breakdown spectroscopy for determination of uranium in thorium–uranium mixed oxide fuel materials. Talanta 78(3):800–804

    Article  CAS  Google Scholar 

  4. Tandon L, Hastings E, Banar J, Barnes J (2008) Nuclear, chemical, and physical characterization of nuclear materials. J Radioannal Nucl Chem 276(2):467–473

    Article  CAS  Google Scholar 

  5. Malav RK, Save ND, Prakash A et al (2013) Use of indigenous microwave system for dissolution and treatment of waste nuclear materials. J Radioanal Nucl Chem 295:425–430

    Article  CAS  Google Scholar 

  6. Singh G, Kumar P, Save ND et al (2016) Impurity analysis and dissolution behaviour of plutonium bearing impure MOX scrap: an assessment of recycling feasibility. J Radioanal Nucl Chem 309:1159–1168

    Article  CAS  Google Scholar 

  7. Misra NL, Dhara S, Aggarwal SK (2014) Total reflection X-ray fluorescence spectrometry for characterization of nuclear materials. BARC Newsletter (Mar–Apr), pp 1–8

  8. Oudinet G, Munoz-Viallard I, Aufore L et al (2008) Characterization of plutonium distribution in MIMAS MOX by image analysis. J Nucl Mater 375:86–94

    Article  CAS  Google Scholar 

  9. Kumar P, Ramakumar KL (2008) Application of neutron well coincidence counting for plutonium determination in mixed oxide fuel fabrication plant. J Radioanal Nucl Chem 277:419–428

    Article  CAS  Google Scholar 

  10. Cole HA (1968) An automatic drum scanning system for the measurement of plutonium in waste. Nucl Instrum Methods 65:45–47

    Article  CAS  Google Scholar 

  11. Mainy P, Morin C (1991) Fuel rod enrichment determination by gamma scanning. J Nucl Mater 178:261–265

    Article  CAS  Google Scholar 

  12. Griffith GW, Menlove HO (1996) Design of active-neutron fuel rod scanner. Nucl Instrum Methods Phys Res 378:552–560

    Article  CAS  Google Scholar 

  13. Dams W, Baumann R, Hanel I et al (1991) Fabrication of UO2 fuels with non-destructive assay and rod scanner technology for production and final quality control. J Nucl Mater 178:171–178

    Article  CAS  Google Scholar 

  14. Vrinda Devi KV, Soreng T, Panakkal JP, Kamath HS (2008) Nondestructive determination of relative plutonium content in MOX fuel pins for pressurised heavy water reactors using passive gamma scanning. Nucl Technol 164:305–308

    Article  Google Scholar 

  15. Vrinda Devi KV, Soreng T, Mukherjee D, Panakkal JP, Kamath HS (2010) Non destructive determination of PuO2 content in MOX fuel pins for fast reactors using Passive Gamma Scanning. J Nucl Mater 399:122–127

    Article  CAS  Google Scholar 

  16. Vrinda Devi KV, Panakkal JP (2013) Quantification of plutonium heterogeneity in (U, Pu) mixed oxide fuel using Passive Gamma Scanning. Nucl Eng Des 255:132–137

    Article  CAS  Google Scholar 

  17. Panakkal JP, Mukherjee D, Manoharan V et al (1996) Nondestructive characterisation of MOX fuel rods using gamma autoradiography (GAR). J Nondestruct Eval 16:5. doi:10.1007/BF02898464

    Google Scholar 

  18. Rao TS, Shrivastv BB, Dubey JN, Patil BP et al (2003) Quantitative estimation of plutonium-rich areas in thorium-based MOX fuels using alpha autoradiography technique. Radiat Meas 36:747–750

    Article  CAS  Google Scholar 

  19. Vrinda Devi KV, Somayajulu PS, Dubey JN et al (2015) Alpha autoradiography studies of Thoria- plutonia experimental fuel for Pu homogeneity. In: Proceedings of international thorium energy conference (ThEC15)

  20. Stejny J (1987) Polymer physics of CR39-the state of understanding. Radiat Prot Dosim 20(1–2):31

    Article  CAS  Google Scholar 

  21. Immé G, Catalano R, Mangano G et al (2014) Radioactivity measurements as tool for physics dissemination. J Radioanal Nucl Chem 299:891

    Article  Google Scholar 

  22. Bujdosó EJ (1997) Radon in the environment. Radioanal Nucl Chem 220:125

    Article  Google Scholar 

  23. Barillon R, Chambaude A (2000) Alpha-particle dosimetry using solid state nuclear track detectors: application to 222Rn and its daughters. J Radioanal Nucl Chem 243:607

    Article  CAS  Google Scholar 

  24. Krivopustov MI, Pavliouk AV, Kovalenko AD et al (2009) First results studying the transmutation of 129I, 237Np, 238Pu, and 239Pu in the irradiation of an extended natU/Pb-assembly with 2.52 GeV deuterons. J Radioanal Nucl Chem 279:567

    Article  CAS  Google Scholar 

  25. Vilela E, Fantuzzi E, Giuacomelli G et al (1991) Optimization of CR-39 for fast neutron dosimetry applications. Radiat Meas 31(1–6):437–442

    Google Scholar 

  26. Zhuo W, Tokonami S, Yonehara H, Yamada Y (2002) A simple passive monitor for integrating measurements of indoor thoron concentrations. Rev Sci Instrum 73(8):2877–2881

    Article  CAS  Google Scholar 

  27. Ghazaly ME, Hassan HE (2014) Spectroscopic studies on alpha particle-irradiated PADC (CR-39 detector). Res Phys 4:40–43

    Google Scholar 

  28. Abdul-Kader AM, Zaki MF, El-Badry BA (2014) Modified the optical and electrical properties of CR-39 by gamma ray irradiation. J Radiat Res Appl Sci 7(3):286–291

    Article  Google Scholar 

  29. Fink D, Hnatowicz V (2007) Fundamentals of ion-irradiated polymers. Springer, Berlin

    Google Scholar 

  30. Tse KCC, Ng FMF, Yu KN (2006) Photo-degradation of PADC by UV radiation at various wavelengths. Polym Degrad Stab 91:2380–2388

    Article  CAS  Google Scholar 

  31. Chun TC (2007) Investigations of the effects of UV irradiation on the etching behavior of CR-39 solid state nuclear track detector. M.Sc. thesis, City University of Hong Kong

  32. El Ghazaly M, Aydarous A (2017) Photoluminescence emission spectra of Makrofol DE 1-1 upon irradiation with ultraviolet radiation. Res Phys 7:333–337

    Google Scholar 

  33. El Ghazaly M, Aydarous A, Al-Thomali TA (2014) Photoluminescence properties of PADC Irradiated with Ultraviolet Radiation of Short Wavelength(UVC). Int J Electrochem Sci 9:3650–3657

    Google Scholar 

  34. El-Badry BA, Zaki MF, Abdul-Kader AM et al (2009) Ion bombardment of poly-allyl-diglycol-carbonate (CR-39). Vacuum 83:1138–1142

    Article  CAS  Google Scholar 

  35. Kalsi PC, Agarwal C (2008) Neutron-irradiation effects on track etching and optical characteristics of CR-39 nuclear track detector. J Mater Sci 43:2865–2868

    Article  CAS  Google Scholar 

  36. Glodeanu F (1984) Fabrication of high density thoria-urania fuel pellets. J Nucl Mater 126:181–183

    Article  CAS  Google Scholar 

  37. Kutty TRG, Somayajulu PS, Khan KB, Kumar A, Kamath HS (2009) Characterization of (Th, U)O2 pellets made by advanced CAP process. J Nucl Mater 384:303–310

    Article  CAS  Google Scholar 

  38. Kutty TRG, Khan KB, Somayajulu PS, Sengupta AK et al (2008) Development of CAP process for fabrication of ThO2–UO2 fuels part I: fabrication and densification behavior. J Nucl Mater 373:299–308

    Article  CAS  Google Scholar 

  39. Bragg WH, Kleeman R (1905) On the α particles of radium, and their loss of range in passing through various atoms and molecules. Philos Mag Ser 10(57):318–340

    Article  CAS  Google Scholar 

  40. Shaikh IH, Dubey JN, Gupta J, Shriwastwa BB, Vrinda Devi KV, Somayajulu PS, Khan KB, Kumar A (2014) Compositional analysis of (Th-U)O2 MOX using alpha autoradiography. In: Proceedings of national conference on power from thorium: present status and future directions, Mumbai

  41. Sardini P, Angileri A, Descostes M, Duval S, Oger T, Patrier P, Rividi N, Siitari-Kauppi M, Toubon H, Donnard J (2016) Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system. Nucl Instrum Methods Phys Res A 833:15–22

    Article  CAS  Google Scholar 

  42. Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 5(8):721–729

    Article  CAS  Google Scholar 

  43. Somayajulu PS, Ghosh PS, Arya A, Vrinda Devi KV et al (2016) Thermal expansion and thermal conductivity of (Th, Pu)O2, mixed oxides: a molecular dynamics and experimental study. J Alloy Compd 664:291–303

    Article  CAS  Google Scholar 

  44. Ramkumar J, Vrinda Devi KV, Somayajulu PS, Chandramouleeswaran S, Khan KB (2015) UV–Visible spectroscopic analysis for optimizing etching conditions of CR39 based alpha autoradiography of MOX fuels. In: Proceedings of 19th national conference on solid state nuclear track detectors and their applications (SSNTDs-19)

Download references

Acknowledgements

The authors express their sincere thanks to Dr.P.D.Naik, Associate Director, chemistry group and Shri.Vivek Bhasin, Associate Director, Nuclear fuels group for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Vrinda Devi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrinda Devi, K.V., Ramkumar, J., Sengupta, A. et al. Characterisation of nuclear fuel by spectroscopic evaluation of alpha autoradiographs. J Radioanal Nucl Chem 314, 259–271 (2017). https://doi.org/10.1007/s10967-017-5361-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5361-4

Keywords

Navigation