Skip to main content

Characterization Techniques for Chemical and Structural Analyses

  • Chapter
  • First Online:
Material Characterization Techniques and Applications

Abstract

Understanding the nature of a newly developed material is of paramount importance in defining its applications. Some characteristics are inherent to the compound and are considered to be part of its fingerprint, while others can be generated as a result of material design and engineering via various treatment methods. Whether inherent or engineered, the knowledge of chemical and structural characteristics of the material plays a vital role for its use in different areas. This chapter is dedicated to the physical and chemical analyses of samples (known or unknown) via nondestructive spectroscopic techniques whereby each presented technique holds a different mechanism of operation. For instance, Raman spectroscopy (RAMAN) uses the vibration of molecules to provide chemical and structural data, while Fourier transform infrared spectroscopy (FTIR) allows identifying this information through absorption and emission of light in the infrared region. Ultraviolet–visible (UV–Vis) spectroscopy determines and quantifies the chemical properties of a sample using absorbed monochromatic light in the ultraviolet and visible regions. X-ray photoelectron spectroscopy (XPS) is widely used to analyze the chemical surface of samples providing chemical state information. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyzes powder samples to identify chemical compounds. X-ray diffraction (XRD) obtains crystallographic structural information (e.g., crystallite size) from crystalline samples. Lastly, nuclear magnetic resonance (NMR) provides physical, chemical, and biological information about the analyzed samples. For each technique, we present information regarding history, mechanism of operation, advantages, and disadvantages, as well as applications centered around the biomedical areas. Finally, a troubleshooting section describes the most common failures faced when analyzing samples with the abovementioned techniques, possible causes, and solutions offered to each problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

7-APTES:

(7-aminoproyl)triethoxysilane

Ag/rGO:

Silver nanoparticles over reduced graphene oxide

Al:

Aluminum

anti-TG:

Antithyroglobulin

anti-TPO:

Antithyroid peroxidase

APTES:

Aminosylane

AuNPs:

Gold nanoparticles

BE:

Binding energy

C4H4O3:

Succinic anhydride

CA:

Cellulose acetate

CT:

Computed tomography

DPPH:

1,1-diphenyl picrylhydrazyl

DRIFT:

Diffuse reflectance infrared Fourier transform

DRIFTS:

Diffuse reflectance infrared Fourier transform spectroscopy

EBFCs:

Enzymatic biofuel cells

EDC:

Carbodiimide

fcc:

Face-centered cubic

FID:

Free induction decay

FFT:

Fast Fourier transform

FTIR:

Fourier transform infrared spectroscopy

FTS:

Fourier transform spectroscopy

GOx:

Glucose oxidase

H:

Hydrogen

H2O2:

Hydrogen peroxide

He:

Helium

IR:

Infrared

KBr:

Potassium bromide

KCl:

Potassium chloride

KE:

Kinetic energy

KOH:

Sodium hydroxide

Mg:

Magnesium

MRI:

Magnetic resonance imaging

MWCNTs:

Multi-walled carbon nanotubes

Ne:

Neon

NEP:

Noise equivalent power

–NH2:

Amino groups

Ni:

Nickel

NMR:

Nuclear magnetic resonance

NS:

Not specific

OPPs:

Organophosphorus pesticides

PBS:

Phosphate buffered saline

PCA:

Principal component analysis

PS:

Photosensitivity

Pt:

Platinum

Pt-Ni:

Platinum-nickel

RAMAN:

Raman spectroscopy

RRS:

Resonance Raman spectroscopy

S/N:

Signal-to-noise

SERS:

Surface-enhanced Raman scattering

SIMCA:

Soft independent modeling of class analogy

SNR:

Signal-to-noise ratio

SOC:

State of charge

SW:

Spectral width

SSRS:

Shifted subtracted Raman spectroscopy

TERS:

Tip-enhanced Raman spectroscopy

TMB:

3,30,5,50-tetramethylbenzidine

Trp:

Tryptophan

TRS:

Transmission Raman spectroscopy

Tyr:

Tyrosine

UV:

Ultraviolet

UV-Vis:

Ultraviolet-visible

V:

Vanadium

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

Zn (NO3)2 · 6H2O:

Zinc nitrate hexahydrate

ZnO:

Zinc oxide

λ:

Wavelength

Φspec:

Spectrometer work function

References

  1. R.S. Krishnan, R.K. Shankar, Raman effect: history of the discovery. J. Raman Spectrosc. 10(1), 1–8 (1981). https://doi.org/10.1002/jrs.1250100103

    Article  ADS  Google Scholar 

  2. D.A. Long, Early history of the Raman effect. Int. Rev. Phys. Chem. 7(4), 317–349 (1988). https://doi.org/10.1080/01442358809353216

    Article  Google Scholar 

  3. E. Smith, G. Dent, Modern Raman Spectroscopy (Wiley Online Library, 2019)

    Google Scholar 

  4. J.R. Beattie, J.J. McGarvey, A.W. Stitt, Raman spectroscopy for the detection of AGEs/ALEs, in Methods in Molecular Biology, vol. 965, ed. by L. Galluzzi, I. Vitale, O. Kepp, G. Kroemer (Springer, 2013), pp. 297–312

    Google Scholar 

  5. K. Eberhardt, C. Stiebing, C. Matthäus, M. Schmitt, J. Popp, Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev. Mol. Diagn. 15(6), 773–787 (2015). https://doi.org/10.1586/14737159.2015.1036744

    Article  Google Scholar 

  6. E.E. Lawson, H.G.M. Edwards, A.C. Williams, B.W. Barry, Applications of Raman spectroscopy to skin research. Ski. Res. Technol. 3(3), 147–153 (1997). https://doi.org/10.1111/j.1600-0846.1997.tb00179.x

    Article  Google Scholar 

  7. D. Chenery, H. Bowring, Infrared and Raman spectroscopic imaging in biosciences. Spectrosc. Eur. 15(4), 8–14 (2003) [Online]. Available: https://www.spectroscopyasia.com/system/files/pdf/IR_15_4.pdf

  8. A. Saha et al., Precision of Raman spectroscopy measurements in detection of microcalcifications in breast needle biopsies. Anal. Chem. 84(15), 6715–6722 (2012). https://doi.org/10.1021/ac3011439

    Article  Google Scholar 

  9. C. Zheng et al., Pursuing shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for concomitant detection of breast lesions and microcalcifications. Nanoscale 7(40), 16960–16968 (2015). https://doi.org/10.1039/C5NR05319F

    Article  ADS  Google Scholar 

  10. R.E. Kast, S.C. Tucker, K. Killian, M. Trexler, K.V. Honn, G.W. Auner, Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev. 33(2–3), 673–693 (2014). https://doi.org/10.1007/s10555-013-9489-6

    Article  Google Scholar 

  11. K. Kong, C. Kendall, N. Stone, I. Notingher, Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 89, 121–134 (2015). https://doi.org/10.1016/j.addr.2015.03.009

    Article  Google Scholar 

  12. M.F. Kircher et al., A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18(5), 829–834 (2012). https://doi.org/10.1038/nm.2721

    Article  Google Scholar 

  13. P. Gao et al., The clinical application of Raman spectroscopy for breast cancer detection. J. Spectrosc. 2017, 1–10 (2017). https://doi.org/10.1155/2017/5383948

    Article  Google Scholar 

  14. B. Li, N.M.S. Sirimuthu, B.H. Ray, A.G. Ryder, Using surface-enhanced Raman scattering (SERS) and fluorescence spectroscopy for screening yeast extracts, a complex component of cell culture media. J. Raman Spectrosc. 43(8), 1074–1082 (2012). https://doi.org/10.1002/jrs.3141

    Article  ADS  Google Scholar 

  15. B. Li, B.H. Ray, K.J. Leister, A.G. Ryder, Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. Anal. Chim. Acta 796, 84–91 (2013). https://doi.org/10.1016/j.aca.2013.07.058

    Article  Google Scholar 

  16. Z. Wen, Raman spectroscopy of protein pharmaceuticals. J. Pharm. Sci. 96(11), 2861–2878 (2007). https://doi.org/10.1002/jps.20895

    Article  Google Scholar 

  17. B. Li, P.W. Ryan, B.H. Ray, K.J. Leister, N.M.S. Sirimuthu, A.G. Ryder, Rapid characterization and quality control of complex cell culture media solutions using Raman spectroscopy and chemometrics. Biotechnol. Bioeng. 107(2), 290–301 (2010). https://doi.org/10.1002/bit.22813

    Article  Google Scholar 

  18. A. Kamińska, A. Kowalska, P. Albrycht, E. Witkowska, J. Waluk, ABO blood groups’ antigen–antibody interactions studied using SERS spectroscopy: towards blood typing. Anal. Methods 8(7), 1463–1472 (2016). https://doi.org/10.1039/C5AY02658J

    Article  Google Scholar 

  19. Y. Zhang, W. Zhou, Y. Xue, J. Yang, D. Liu, Multiplexed imaging of trace residues in a single latent fingerprint. Anal. Chem. 88(24), 12502–12507 (2016). https://doi.org/10.1021/acs.analchem.6b04077

    Article  Google Scholar 

  20. M.-M. Blum, H. John, Historical perspective and modern applications of attenuated total reflectance—Fourier transform infrared spectroscopy (ATR-FTIR). Drug Test. Anal. 4(3–4), 298–302 (2012). https://doi.org/10.1002/dta.374

    Article  Google Scholar 

  21. S. Tanaka, Fourier transform infrared spectroscopy. J. Japan Oil Chem. Soc. 32(10), 586–592 (1983). https://doi.org/10.5650/jos1956.32.586

    Article  Google Scholar 

  22. M. Mohamed, J. Jaafar, A. Ismail, M.H.D. Othman, M.A. Rahman, Fourier transform infrared (FTIR) spectroscopy, in Membrane Characterization, ed. by N. Hilal, A.F. Ismail, T. Matsuura, D. Oatley-Radcliffe (Elsevier, 2017), pp. 3–29

    Google Scholar 

  23. J.S. Gaffney, N.A. Marley, D.E. Jones, Fourier transform infrared (FTIR) spectroscopy, in Characterization of Materials (Wiley, Hoboken, NJ, USA, 2012)

    Google Scholar 

  24. J.A. Larrabee, S. Choi, Fourier transform infrared spectroscopy. Methods Enzymol. 226, 289–305 (1993). https://doi.org/10.1016/0076-6879(93)26014-Z

    Article  Google Scholar 

  25. B. Smith, Introduction to infrared spectroscopy, in Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd edn. (CRC Press, 2011), pp. 1–17

    Google Scholar 

  26. S.F. Sim, M.X.L. Chai, A.L. Jeffrey Kimura, Prediction of lard in palm olein oil using simple linear regression (SLR), multiple linear regression (MLR), and partial least squares regression (PLSR) based on Fourier-transform infrared (FTIR). J. Chem. 2018, 1–8, (2018). https://doi.org/10.1155/2018/7182801

  27. A. Dutta, Fourier transform infrared spectroscopy, in Spectroscopic Methods for Nanomaterials Characterization, vol. 2 (Elsevier, 2017), pp. 73–93

    Google Scholar 

  28. M. Mecozzi, L. Nisini, The differentiation of biodegradable and non-biodegradable polyethylene terephthalate (PET) samples by FTIR spectroscopy: a potential support for the structural differentiation of PET in environmental analysis. Infrared Phys. Technol. 101, 119–126 (2019). https://doi.org/10.1016/j.infrared.2019.06.008

    Article  ADS  Google Scholar 

  29. H. Barndõk, N. Merayo, L. Blanco, D. Hermosilla, Á. Blanco, Application of on-line FTIR methodology to study the mechanisms of heterogeneous advanced oxidation processes. Appl. Catal. B Environ. 185, 344–352 (2016). https://doi.org/10.1016/j.apcatb.2015.12.036

    Article  Google Scholar 

  30. J. Zięba-Palus, B. Trzcińska, A. Wesełucha-Birczyńska, P. Moskal, J. Sacharz, The sequence of changes observed during degradation process of paper by the use of UV/VIS and FTIR spectrometry with application of the PCA and 2D correlation method for forensic purposes. J. Mol. Struct. 1205, 127651 (2020). https://doi.org/10.1016/j.molstruc.2019.127651

    Article  Google Scholar 

  31. H. Lin, Y. Zhang, Q. Wang, B. Li, P. Huang, Z. Wang, Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy. Sci. Rep. 7(1), 13254 (2017). https://doi.org/10.1038/s41598-017-13725-1

    Article  ADS  Google Scholar 

  32. N.N. Atia, M.A. Marzouq, A.I. Hassan, W.E. Eltoukhi, A rapid FTIR spectroscopic assay for quantitative determination of memantine hydrochloride and amisulpride in human plasma and pharmaceutical formulations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 236, 118377 (2020). https://doi.org/10.1016/j.saa.2020.118377

    Article  Google Scholar 

  33. H. Tiernan, B. Byrne, S.G. Kazarian, ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 241, 118636 (2020). https://doi.org/10.1016/j.saa.2020.118636

    Article  Google Scholar 

  34. C. Agudelo‐Cuartas, D. Granda‐Restrepo, P.J.A. Sobral, W. Castro, Determination of mechanical properties of whey protein films during accelerated aging: application of FTIR profiles and chemometric tools. J. Food Process. Eng. 44(5) (2021). https://doi.org/10.1111/jfpe.13477

  35. O.F. Vázquez-Vuelvas, F.A. Chávez-Camacho, J.A. Meza-Velázquez, E. Mendez-Merino, M.M. Ríos-Licea, J.C. Contreras-Esquivel, A comparative FTIR study for supplemented agavin as functional food. Food Hydrocoll. 103, 105642 (2020). https://doi.org/10.1016/j.foodhyd.2020.105642

  36. R. Kumar, S. Sharma, D. Pathak, N. Dhiman, N. Arora, Ionic conductivity, FTIR and thermal studies of nano-composite plasticized proton conducting polymer electrolytes. Solid State Ionics 305, 57–62 (2017). https://doi.org/10.1016/j.ssi.2017.04.020

    Article  Google Scholar 

  37. A. Pawlicka et al., Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochim. Acta 305, 232–239 (2019). https://doi.org/10.1016/j.electacta.2019.03.055

    Article  Google Scholar 

  38. M. Mecozzi, M. Pietroletti, Y.B. Monakhova, FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: application to monitoring studies. Mar. Pollut. Bull. 106(1–2), 155–161 (2016). https://doi.org/10.1016/j.marpolbul.2016.03.012

    Article  Google Scholar 

  39. A.P.M. Michel, A.E. Morrison, V.L. Preston, C.T. Marx, B.C. Colson, H.K. White, Rapid identification of marine plastic debris via spectroscopic techniques and machine learning classifiers. Environ. Sci. Technol. 54(17), 10630–10637 (2020). https://doi.org/10.1021/acs.est.0c02099

    Article  ADS  Google Scholar 

  40. O. Anjos, A.J.A. Santos, L.M. Estevinho, I. Caldeira, FTIR-ATR spectroscopy applied to quality control of grape-derived spirits. Food Chem. 205, 28–35 (2016). https://doi.org/10.1016/j.foodchem.2016.02.128

    Article  Google Scholar 

  41. J. Bell, P. Nel, B. Stuart, Non-invasive identification of polymers in cultural heritage collections: evaluation, optimisation and application of portable FTIR (ATR and external reflectance) spectroscopy to three-dimensional polymer-based objects. Herit. Sci. 7(1), 1–18 (2019). https://doi.org/10.1186/s40494-019-0336-0

    Article  Google Scholar 

  42. T. Rymsza, E.A. Ribeiro, L.F. das Chagas e Silva de Carvalho, T. Bhattacharjee, R. de Azevedo Canevari, Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 196, 238–246 (2018). https://doi.org/10.1016/j.saa.2018.02.004

  43. K. Chrabaszcz et al., Label-free FTIR spectroscopy detects and visualizes the early stage of pulmonary micrometastasis seeded from breast carcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1864(11), 3574–3584 (2018). https://doi.org/10.1016/j.bbadis.2018.08.022

    Article  Google Scholar 

  44. V.E. Sitnikova, M.A. Kotkova, T.N. Nosenko, T.N. Kotkova, D.M. Martynova, M.V. Uspenskaya, Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis. Talanta 214(Oct 2019), 120857 (2020). https://doi.org/10.1016/j.talanta.2020.120857

  45. E. Gray et al., Health economic evaluation of a serum-based blood test for brain tumour diagnosis: exploration of two clinical scenarios. BMJ Open 8(5), e017593 (2018). https://doi.org/10.1136/bmjopen-2017-017593

    Article  Google Scholar 

  46. D. Kumar et al., Results in chemistry detection of flonicamid insecticide in vegetable samples by UV–visible spectrophotometer and FTIR. Results Chem. 2, 10059 (2020). https://doi.org/10.1016/j.rechem.2020.100059

    Article  Google Scholar 

  47. W. Schmidt, Introduction to optical spectroscopy, in Optical Spectroscopy in Chemistry and Life Sciences: An Introduction (Wiley-VCH Verlag, Weinheim, Germany, 2005), pp. 1–12

    Google Scholar 

  48. N.C. Thomas, The early history of spectroscopy. J. Chem. Educ. 68(8), 631 (1991). https://doi.org/10.1021/ed068p631

    Article  Google Scholar 

  49. S.S. Nielsen, Food Analysis (Springer US, Boston, MA, USA, 2010)

    Google Scholar 

  50. H. Wang, P.K. Chu, Surface characterization of biomaterials, in Characterization of Biomaterials (Elsevier, 2013), pp. 105–174

    Google Scholar 

  51. F.S. Rocha, A.J. Gomes, C.N. Lunardi, S. Kaliaguine, G.S. Patience, Experimental methods in chemical engineering: ultraviolet visible spectroscopy-UV–Vis. Can. J. Chem. Eng. 96(12), 2512–2517 (2018). https://doi.org/10.1002/cjce.23344

    Article  Google Scholar 

  52. E. Tomaszewska et al., Detection limits of DLS and UV–Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. 2013, 1–10 (2013). https://doi.org/10.1155/2013/313081

    Article  Google Scholar 

  53. J. Roberts, A. Power, J. Chapman, S. Chandra, D. Cozzolino, The use of UV–Vis spectroscopy in bioprocess and fermentation monitoring. Fermentation 4(1), 18 (2018). https://doi.org/10.3390/fermentation4010018

    Article  Google Scholar 

  54. J. Zeng et al., Au/AgI dimeric nanoparticles for highly selective and sensitive colorimetric detection of hydrogen sulfide. Adv. Funct. Mater. 1800515, 1–10 (2018). https://doi.org/10.1002/adfm.201800515.

  55. F.A. Saif, S.A. Yaseen, A.S. Alameen, S.B. Mane, P.B. Undre, Identification and characterization of aspergillus species of fruit rot fungi using microscopy, FT-IR, Raman and UV–Vis spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 119010 (2020). https://doi.org/10.1016/j.saa.2020.119010

  56. M.U.M. Patel, R. Dominko, Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries. Chemsuschem 7(8), 2167–2175 (2014). https://doi.org/10.1002/cssc.201402215

    Article  Google Scholar 

  57. B. Li et al., A self-designed versatile and portable sensing device based on smart phone for colorimetric detection. Anal. Bioanal. Chem. 413(2), 533–541 (2021). https://doi.org/10.1007/s00216-020-03024-6

    Article  Google Scholar 

  58. P. Liu et al., Fluorescence-enhanced bio-detection platforms obtained through controlled ‘step-by-step’ clustering of silver nanoparticles. Nanoscale 10(2), 848–855 (2018). https://doi.org/10.1039/C7NR07486G

    Article  Google Scholar 

  59. F. Mohammadparast, R. Teja Addanki Tirumala, S. Bhardwaj Ramakrishnan, A.P. Dadgar, M. Andiappan, Operando UV–Vis spectroscopy as potential in-line PAT system for size determination of functioning metal nanocatalysts. Chem. Eng. Sci. 225, 115821 (2020). https://doi.org/10.1016/j.ces.2020.115821

  60. R. Begum et al., Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: a review. Crit. Rev. Anal. Chem. 0(0), 1–14 (2018). https://doi.org/10.1080/10408347.2018.1451299

  61. K.-H. Shin, C.-S. Jin, J.-Y. So, S.-K. Park, D.-H. Kim, S.-H. Yeon, Real-time monitoring of the state of charge (SOC) in vanadium redox-flow batteries using UV–Vis spectroscopy in operando mode. J. Energy Storage 27(Nov 2019), 101066 (2020). https://doi.org/10.1016/j.est.2019.101066

  62. J.M. Antosiewicz, D. Shugar, UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications. Biophys. Rev. 8(2), 163–177 (2016). https://doi.org/10.1007/s12551-016-0197-7

    Article  Google Scholar 

  63. Y. Li, Q. Luo, R. Hu, Z. Chen, P. Qiu, A sensitive and rapid UV–vis spectrophotometry for organophosphorus pesticides detection based on Ytterbium (Yb3+) functionalized gold nanoparticle. Chinese Chem. Lett. 29(12), 1845–1848 (2018). https://doi.org/10.1016/j.cclet.2018.11.016

    Article  Google Scholar 

  64. H.V. Tran et al., Silver nanoparticles-decorated reduced graphene oxide: a novel peroxidase-like activity nanomaterial for development of a colorimetric glucose biosensor. Arab. J. Chem. 13(7), 6084–6091 (2020). https://doi.org/10.1016/j.arabjc.2020.05.008

    Article  Google Scholar 

  65. T.K. Patle, K. Shrivas, R. Kurrey, S. Upadhyay, R. Jangde, R. Chauhan, Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 242, 118717 (2020). https://doi.org/10.1016/j.saa.2020.118717

    Article  Google Scholar 

  66. J.M. Hollander, D.A. Shirley, The 1981 nobel prize in physics. Science (80–) 214(4521), 629–631 (1981). https://doi.org/10.1126/science.214.4521.629

  67. N.V. Alov, Fifty years of X-ray photoelectron spectroscopy. J. Anal. Chem. 60(3), 297–300 (2005). https://doi.org/10.1007/s10809-005-0087-9

    Article  Google Scholar 

  68. T. Susi, T. Pichler, P. Ayala, X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 6, 177–192 (2015). https://doi.org/10.3762/bjnano.6.17

    Article  Google Scholar 

  69. G. Greczynski, L. Hultman, X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci. 107, 100591 (2020). https://doi.org/10.1016/j.pmatsci.2019.100591

    Article  Google Scholar 

  70. J.D. Andrade, X-ray photoelectron spectroscopy (XPS), in Surface and Interfacial Aspects of Biomedical Polymers (Springer, Boston, MA, 1985), pp. 105–195

    Google Scholar 

  71. T.A. Carlson, Basic assumptions and recent developments in quantitative XPS. Surf. Interface Anal. 4(4), 125–134 (1982). https://doi.org/10.1002/sia.740040402

    Article  Google Scholar 

  72. L. Yahia, L.K. Mireles, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF SIMS), in Characterization of Polymeric Biomaterials (Elsevier, 2017), pp. 83–97

    Google Scholar 

  73. E. Korin, N. Froumin, S. Cohen, Surface analysis of nanocomplexes by X-ray photoelectron spectroscopy (XPS). ACS Biomater. Sci. Eng. 3(6), 882–889 (2017). https://doi.org/10.1021/acsbiomaterials.7b00040

    Article  Google Scholar 

  74. S. Tougaard, Improved XPS analysis by visual inspection of the survey spectrum. Surf. Interface Anal. 50(6), 657–666 (2018). https://doi.org/10.1002/sia.6456

    Article  Google Scholar 

  75. D. Briggs, Industrial applications of XPS: recent developments in catalysis and polymer adhesion studies. Appl. Surf. Sci. 6(3–4), 188–203 (1980). https://doi.org/10.1016/0378-5963(80)90012-4

    Article  ADS  Google Scholar 

  76. A.V. Boryakov, S.I. Surodin, R.N. Kryukov, D.E. Nikolichev, S.Y. Zubkov, Spectral fit refinement in XPS analysis technique and its practical applications. J. Electron Spectros. Relat. Phenom. 229(2018), 132–140 (2018). https://doi.org/10.1016/j.elspec.2017.11.004

    Article  Google Scholar 

  77. C. Fu et al. Ultrasensitive sandwich-like electrochemical biosensor based on core-shell Pt@CeO2 as signal tags and double molecular recognition for cerebral dopamine detection. Talanta 223 (July 2020), 121719 (2021). https://doi.org/10.1016/j.talanta.2020.121719

  78. S.A. Al-Bataineh, L.G. Britcher, H.J. Griesser, XPS characterization of the surface immobilization of antibacterial furanones. Surf. Sci. 600(4), 952–962 (2006). https://doi.org/10.1016/j.susc.2005.12.028

    Article  ADS  Google Scholar 

  79. S.L. McArthur, Applications of XPS in bioengineering. Surf. Interface Anal. 38(11), 1380–1385 (2006). https://doi.org/10.1002/sia.2498

    Article  Google Scholar 

  80. B. Putz et al., Combined TEM and XPS studies of metal-polymer interfaces for space applications. Surf. Coatings Technol. 332, 368–375 (2017). https://doi.org/10.1016/j.surfcoat.2017.07.079

    Article  Google Scholar 

  81. F. Reniers, C. Tewell, New improvements in energy and spatial (x, y, z) resolution in AES and XPS applications. J. Electron Spectros. Relat. Phenom. 142(1), 1–25 (2005). https://doi.org/10.1016/j.elspec.2004.07.004

    Article  Google Scholar 

  82. V. Shutthanandan et al., Applications of XPS in the characterization of battery materials. J. Electron Spectros. Relat. Phenom. 231(Nov 2017), 2–10 (2019). https://doi.org/10.1016/j.elspec.2018.05.005

  83. V.S. Smentkowski, Applications of XPS in biology and biointerface analysis. Surf. Anal. Tech. Biol., 1–326 (2014). https://doi.org/10.1007/978-3-319-01360-2

  84. N. Vandencasteele, F. Reniers, Plasma-modified polymer surfaces: characterization using XPS. J. Electron Spectros. Relat. Phenom. 178–179(C), 394–408 (2010). https://doi.org/10.1016/j.elspec.2009.12.003

  85. A.V. Pushkarev et al., Data on characterization of glass biochips and validation of the label-free biosensor for detection of autoantibodies in human serum. Data Br. 30, 105648 (2020). https://doi.org/10.1016/j.dib.2020.105648

    Article  Google Scholar 

  86. M.B. Mitchell, Fundamentals and applications of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, in Structure-Property Relations in Polymers (American Chemical Society, 1993), pp. 351–375

    Google Scholar 

  87. P. Larkin, Infrared and Raman Spectroscopy (Elsevier, 2018)

    Google Scholar 

  88. G. Anbalagan, G. Sivakumar, A.R. Prabakaran, S. Gunasekaran, Spectroscopic characterization of natural chrysotile. Vib. Spectrosc. 52(2), 122–127 (2010). https://doi.org/10.1016/j.vibspec.2009.11.007

    Article  Google Scholar 

  89. G. Accardo, R. Cioffi, F. Colangelo, R. D’Angelo, L. De Stefano, F. Paglietti, Diffuse reflectance infrared Fourier transform spectroscopy for the determination of asbestos species in bulk building materials. Materials (Basel) 7(1), 457–470 (2014). https://doi.org/10.3390/ma7010457

    Article  ADS  Google Scholar 

  90. R.T. So, N.E. Blair, A.L. Masterson, Carbonate mineral identification and quantification in sediment matrices using diffuse reflectance infrared Fourier transform spectroscopy. Environ. Chem. Lett. 18(5), 1725–1730 (2020). https://doi.org/10.1007/s10311-020-01027-4

    Article  Google Scholar 

  91. M. Manfredi, E. Barberis, A. Rava, E. Robotti, F. Gosetti, E. Marengo, Portable diffuse reflectance infrared Fourier transform (DRIFT) technique for the non-invasive identification of canvas ground: IR spectra reference collection. Anal. Methods 7(6), 2313–2322 (2015). https://doi.org/10.1039/c4ay02006e

    Article  Google Scholar 

  92. I. Arrizabalaga et al., Diffuse reflectance FTIR database for the interpretation of the spectra obtained with a handheld device on built heritage materials. Anal. Methods 7(3), 1061–1070 (2015). https://doi.org/10.1039/c4ay02189d

    Article  Google Scholar 

  93. Z.M. Gibbs, A. Lalonde, G.J. Snyder, Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New J. Phys. 15, 0–18 (2013). https://doi.org/10.1088/1367-2630/15/7/075020

  94. J. Niemeyer, Y. Chen, J.-M. Bollag, Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J. 56(1), 135–140 (1992). https://doi.org/10.2136/sssaj1992.03615995005600010021x

    Article  ADS  Google Scholar 

  95. T. Armaroli, T. Bécue, S. Gautier, Diffuse reflection infrared spectroscopy (DRIFTS): application to the in situ analysis of catalysts. Oil Gas Sci. Technol. 59(2), 215–237 (2004). https://doi.org/10.2516/ogst:2004016

    Article  Google Scholar 

  96. L. Tremblay, J.P. Gagné, Fast quantification of humic substances and organic matter by direct analysis of sediments using DRIFT spectroscopy. Anal. Chem. 74(13), 2985–2993 (2002). https://doi.org/10.1021/ac011043g

    Article  Google Scholar 

  97. P.E. Fanning, M.A. Vannice, A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon N. Y. 31(5), 721–730 (1993). https://doi.org/10.1016/0008-6223(93)90009-Y

    Article  Google Scholar 

  98. M.P. Fuller, P.R. Griffiths, Diffuse reflectance measurements by infrared Fourier transform spectrometry. Anal. Chem. 50(13), 1906–1910 (1978). https://doi.org/10.1021/ac50035a045

    Article  Google Scholar 

  99. A.A. Kamnev, A.V. Tugarova, A.G. Shchelochkov, K. Kovács, E. Kuzmann, Diffuse reflectance infrared Fourier transform (DRIFT) and Mössbauer spectroscopic study of Azospirillum brasilense Sp7: evidence for intracellular iron (II) oxidation in bacterial biomass upon lyophilisation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 229 (2020). https://doi.org/10.1016/j.saa.2019.117970

  100. L. Granado et al., Non-destructive DRIFT spectroscopy measurement of the degree of curing of industrial epoxy/silica composite buildup layers. Polym. Test. 70(July), 188–191 (2018). https://doi.org/10.1016/j.polymertesting.2018.07.007

    Article  Google Scholar 

  101. B.A. Bhongade, S.R. Dhaneshwar, Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) application in pharmaceutical analysis: method for quantification of ranolazine in tablet dosage form. Vib. Spectrosc. 93(95635), 52–56 (2017). https://doi.org/10.1016/j.vibspec.2017.10.001

    Article  Google Scholar 

  102. S. Steger, H. Stege, S. Bretz, O. Hahn, Capabilities and limitations of handheld diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 195, 103–112 (2018). https://doi.org/10.1016/j.saa.2018.01.057

    Article  ADS  Google Scholar 

  103. K. Ushizawa, Y. Sato, T. Mitsumori, T. Machinami, T. Ueda, T. Ando, Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem. Phys. Lett. 351(1–2), 105–108 (2002). https://doi.org/10.1016/S0009-2614(01)01362-8

    Article  ADS  Google Scholar 

  104. F. Herold et al., Methodology for the identification of carbonyl absorption maxima of carbon surface oxides in DRIFT spectra. Carbon Trends 3, 100020 (2021). https://doi.org/10.1016/j.cartre.2020.100020

    Article  Google Scholar 

  105. M. Eckert, Max von Laue and the discovery of X-ray diffraction in 1912. Ann. Phys. 524(5), 83–85 (2012). https://doi.org/10.1002/andp.201200724

    Article  MATH  Google Scholar 

  106. S.V. Borisov, N.V. Podberezskaya, X-ray diffraction analysis: A brief history and achievements of the first century. J. Struct. Chem. 53, 1–3 (2012). https://doi.org/10.1134/S0022476612070013

    Article  Google Scholar 

  107. G. Hildebrandt, The discovery of the diffraction of X-rays in crystals—a historical review. Cryst. Res. Technol. 28(6), 747–766 (1993). https://doi.org/10.1002/crat.2170280602

    Article  Google Scholar 

  108. H. Stanjek, W. Häusler, Basics of X-ray diffraction. Hyperfine Interact. 154(1–4), 107–119 (2004). https://doi.org/10.1023/B:HYPE.0000032028.60546.38

    Article  ADS  Google Scholar 

  109. M. Lee, X-Ray Diffraction for Materials Research: From Fundamentals to Applications (Apple Academic Press, 2016)

    Google Scholar 

  110. J. Epp, X-ray diffraction (XRD) techniques for materials characterization. Mater. Charact. Using Nondestruct. Eval. Methods, 81–124 (2016). https://doi.org/10.1016/B978-0-08-100040-3.00004-3

  111. A.K. Keshari, A.C. Pandey, Size and distribution: a comparison of XRD, SAXS and SANS study of II–VI semiconductor nanocrystals. J. Nanosci. Nanotechnol. 8(3), 1221–1227 (2008). https://doi.org/10.1166/jnn.2008.370

    Article  Google Scholar 

  112. L. Lu, V. Sahajwalla, C. Kong, D. Harris, Quantitative X-ray diffraction analysis and its application to various coals. Carbon N. Y. 39(12), 1821–1833 (2001). https://doi.org/10.1016/S0008-6223(00)00318-3

    Article  Google Scholar 

  113. M.R. Gauna, M.S. Conconi, S. Gomez, G. Suárez, E.F. Aglietti, N.M. Rendtorff, Monoclinic-tetragonal zirconia quantification of commercial nanopowder mixtures by XRD and DTA. Ceram. Silikaty 50(4), 318–325 (2015)

    Google Scholar 

  114. T. Theivasanthi, M. Alagar, X-ray diffraction studies of copper nanopowder. Arch. Phys. Res. 1(2), 112–117 (2010)

    Google Scholar 

  115. M. Ermrich, D. Opper, XRD for the Analyst: Getting Acquainted with the Principles (PANalytical, 2011)

    Google Scholar 

  116. R. Svoboda, Reaction/crystallization kinetics studied via in situ XRD: experimental conditions versus methods of kinetic analysis. Philos. Mag. 99(23), 2941–2956 (2019). https://doi.org/10.1080/14786435.2019.1648899

    Article  ADS  Google Scholar 

  117. C. Ghanty et al. Li+-ion extraction/insertion of Ni-rich Li1+x (NiyCozMnz)wO2 (0.005 < x < 0.03; y:z = 8:1, w ≈ 1) electrodes: in situ XRD and Raman spectroscopy study. ChemElectroChem 2(10), 1479–1486 (2015). https://doi.org/10.1002/celc.201500160

  118. N. Raval, R. Maheshwari, D. Kalyane, S.R. Youngren-Ortiz, M.B. Chougule, R.K. Tekade, Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. Basic Fundam. Drug Deliv. 369–400 (2018). https://doi.org/10.1016/B978-0-12-817909-3.00010-8

  119. G. Koorösy, K. Tomolya, D. Janovszky, J. Sólyom, Evaluation of XRD analysis of amorphous alloys. Mater. Sci. Forum 729, 419–423 (2013). https://doi.org/10.4028/www.scientific.net/MSF.729.419

    Article  Google Scholar 

  120. A.A. Bunaciu, E.G. Udriştioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications. Crit. Rev. Anal. Chem. 45(4), 289–299 (2015). https://doi.org/10.1080/10408347.2014.949616

  121. H. Khan, A.S. Yerramilli, A. D’Oliveira, T.L. Alford, D.C. Boffito, G.S. Patience, Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. Can. J. Chem. Eng. 98(6), 1255–1266 (2020). https://doi.org/10.1002/cjce.23747

    Article  Google Scholar 

  122. S. Tariq et al., Synthesis and structural analysis of novel indole derivatives by XRD, spectroscopic and DFT studies. J. Mol. Struct. 1203, 127438 (2020). https://doi.org/10.1016/j.molstruc.2019.127438

    Article  Google Scholar 

  123. C.A. Rosas-Casarez et al., Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials. Int. J. Adv. Comput. Sci. Its Appl. 4(4), 25–30 (2014)

    Google Scholar 

  124. S.H. Kim, C.M. Lee, K. Kafle, Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 30(12), 2127–2141 (2013). https://doi.org/10.1007/s11814-013-0162-0

    Article  Google Scholar 

  125. A. Patlolla, E.V. Carino, S.N. Ehrlich, E. Stavitski, A.I. Frenkel, Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts. ACS Catal. 2(11), 2216–2223 (2012). https://doi.org/10.1021/cs300414c

    Article  Google Scholar 

  126. L. Zhao et al. Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy. Fuel 272, 117705 (2020). https://doi.org/10.1016/j.fuel.2020.117705

  127. X. Li et al., Encapsulating enzyme into metal-organic framework during in-situ growth on cellulose acetate nanofibers as self-powered glucose biosensor. Biosens. Bioelectron. 171(July 2020), 112690 (2021). https://doi.org/10.1016/j.bios.2020.112690

  128. T. Dayakar, K. Venkateswara Rao, K. Bikshalu, V. Rajendar, S.H. Park, Novel synthesis and structural analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor. Mater. Sci. Eng. C 75, 1472–1479 (2017). https://doi.org/10.1016/j.msec.2017.02.032

  129. A. Şavk, H. Aydın, K. Cellat, F. Şen, A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite. J. Mol. Liq. 300 (2020). https://doi.org/10.1016/j.molliq.2019.112355

  130. D. Marion, An introduction to biological NMR spectroscopy. Mol. Cell. Proteom. 12(11), 3006–3025 (2013). https://doi.org/10.1074/mcp.O113.030239

    Article  Google Scholar 

  131. J.S. Cohen, J.W. Jaroszewski, O. Kaplan, J. Ruiz-Cabello, S.W. Collier, A history of biological applications of NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 28(1), 53–85 (1995). https://doi.org/10.1016/0079-6565(95)01020-3

    Article  Google Scholar 

  132. R.L. Kleinberg, J.A. Jackson, An introduction to the history of NMR well logging. Concepts Magn. Reson. 13(6), 340–342 (2001). https://doi.org/10.1002/cmr.1018

    Article  Google Scholar 

  133. K. Zia, T. Siddiqui, S. Ali, I. Farooq, M.S. Zafar, Z. Khurshid, Nuclear magnetic resonance spectroscopy for medical and dental applications: a comprehensive review. Eur. J. Dent. 13(1), 124–128 (2019). https://doi.org/10.1055/s-0039-1688654

    Article  Google Scholar 

  134. T.W.M. Fan, A.N. Lane, Applications of NMR spectroscopy to systems biochemistry. Prog. Nucl. Magn. Reson. Spectrosc. 92–93, 18–53 (2016). https://doi.org/10.1016/j.pnmrs.2016.01.005

    Article  Google Scholar 

  135. J.L. Markley et al., The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 43, 34–40 (2017). https://doi.org/10.1016/j.copbio.2016.08.001

    Article  Google Scholar 

  136. S.J. Devience et al., Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10(2), 129–134 (2015). https://doi.org/10.1038/nnano.2014.313

    Article  ADS  Google Scholar 

  137. Atta-ur-Rahman, M.I. Choudhary, Atia-tul-Wahab, Sensitivity enhancement, in Solving Problems with NMR Spectroscopy, 2nd edn. (Elsevier, 2016), pp. 99–132

    Google Scholar 

  138. A.H. Emwas et al., NMR spectroscopy for metabolomics research. Metabolites 9(7) (2019). https://doi.org/10.3390/metabo9070123

  139. Atta-ur-Rahman, M.I. Choudhary, Atia-tul-Wahab, The basics of modern NMR spectroscopy, in Solving Problems with NMR Spectroscopy, 2nd edn. (Elsevier Inc, 2016), pp. 1–34

    Google Scholar 

  140. A. Spyros, P. Dais, NMR Spectroscopy in Food Analysis (Royal Society of Chemistry, 2012)

    Google Scholar 

  141. D.W.H. Merkx, G.T.S. Hong, A. Ermacora, J.P.M. Van Duynhoven, Rapid quantitative profiling of lipid oxidation products in a food emulsion by 1H NMR. Anal. Chem. 90(7), 4863–4870 (2018). https://doi.org/10.1021/acs.analchem.8b00380

    Article  Google Scholar 

  142. E. Hatzakis, E. Archavlis, P. Dais, Determination of glycerol in wines using 31P-NMR spectroscopy. JAOCS J. Am. Oil Chem. Soc. 84(7), 615–619 (2007). https://doi.org/10.1007/s11746-007-1099-4

    Article  Google Scholar 

  143. P. Charisiadis, V. Exarchou, A.N. Troganis, I.P. Gerothanassis, Exploring the ‘forgotten’–OH NMR spectral region in natural products. Chem. Commun. 46(20), 3589 (2010). https://doi.org/10.1039/b927256a

    Article  Google Scholar 

  144. S.M. Ackermann et al., Automated multicomponent analysis of soft drinks using 1D 1H and 2D 1H–1H J-resolved NMR spectroscopy. Food Anal. Methods 10(3), 827–836 (2017). https://doi.org/10.1007/s12161-016-0643-y

    Article  Google Scholar 

  145. N. Hao, H. Ben, C.G. Yoo, S. Adhikari, A.J. Ragauskas, Review of NMR characterization of pyrolysis oils. Energy Fuels 30(9), 6863–6880 (2016). https://doi.org/10.1021/acs.energyfuels.6b01002

  146. C.A. Mullen, G.D. Strahan, A.A. Boateng, Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy. Energy Fuels 23(5), 2707–2718 (2009). https://doi.org/10.1021/ef801048b

    Article  Google Scholar 

  147. E. Luchinat, L. Banci, In-cell NMR: a topical review. Int. Union Crystallogr. J. 4(2), 108–118 (2017). https://doi.org/10.1107/S2052252516020625

    Article  Google Scholar 

  148. Z. Serber, A.T. Keatinge-Clay, R. Ledwidge, A.E. Kelly, S.M. Miller, V. Dötsch, High-resolution macromolecular NMR spectroscopy inside living cells. J. Am. Chem. Soc. 123(10), 2446–2447 (2001). https://doi.org/10.1021/ja0057528

    Article  Google Scholar 

  149. C. Chen et al., Exploring metabolic profile differences between colorectal polyp patients and controls using seemingly unrelated regression. J. Proteome Res. 14(6), 2492–2499 (2015). https://doi.org/10.1021/acs.jproteome.5b00059

    Article  Google Scholar 

  150. A.H. Emwas et al., Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics 11(4), 872–894 (2015). https://doi.org/10.1007/s11306-014-0746-7

  151. R. Kaddurah-Daouk, R. Weinshilboum, Metabolomic signatures for drug response phenotypes: pharmacometabolomics enables precision medicine. Clin. Pharmacol. Ther. 98(1), 71–75 (2015). https://doi.org/10.1002/cpt.134

    Article  Google Scholar 

  152. N.E. Leadbeater, J.R. Schmink, Use of Raman spectroscopy as a tool for in situ monitoring of microwave-promoted reactions. Nat. Protoc. 3(1), 1–7 (2008). https://doi.org/10.1038/nprot.2007.453

    Article  Google Scholar 

  153. N. Gierlinger, T. Keplinger, M. Harrington, Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 7(9), 1694–1708 (2012). https://doi.org/10.1038/nprot.2012.092

    Article  Google Scholar 

  154. Madison Instruments, FTIR Troubleshooting Guide

    Google Scholar 

  155. G.H. Major et al., Assessment of the frequency and nature of erroneous X-ray photoelectron spectroscopy analyses in the scientific literature. J. Vac. Sci. Technol. A 38(6), 061204 (2020). https://doi.org/10.1116/6.0000685

    Article  Google Scholar 

  156. G.H. Major et al., Practical guide for curve fitting in X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 38(6), 061203 (2020). https://doi.org/10.1116/6.0000377

    Article  Google Scholar 

  157. F.C. Meunier, Pitfalls and benefits of: In situ and operando diffuse reflectance FT-IR spectroscopy (DRIFTS) applied to catalytic reactions. React. Chem. Eng. 1(2), 134–141 (2016). https://doi.org/10.1039/c5re00018a

    Article  Google Scholar 

  158. A. Paredes-Nunez, I. Jbir, D. Bianchi, F.C. Meunier, Spectrum baseline artefacts and correction of gas-phase species signal during diffuse reflectance FT-IR analyses of catalysts at variable temperatures. Appl. Catal. A Gen. 495, 17–22 (2015). https://doi.org/10.1016/j.apcata.2015.01.042

    Article  Google Scholar 

  159. N. Döbelin, Lesson 3 Sample Preparation and Problems (2013)

    Google Scholar 

  160. V. Ramaswamy, Problems encountered in powder X-ray diffraction analysis of zeolites and molecular sieves. Stud. Surf. Sci. Catal. 113, 683–688 (1998). https://doi.org/10.1016/s0167-2991(98)80346-7

    Article  Google Scholar 

  161. S. How, X. How, X. General, XRD-System Instruction Manual

    Google Scholar 

  162. A.M. Torres, W.S. Price, Common problems and artifacts encountered in solution-state NMR experiments. Concepts Magn. Reson. Part A Bridg. Educ. Res. 45A(2) (2016). https://doi.org/10.1002/cmr.a.21387

  163. P.R. Davies, D.J. Morgan, Practical guide for X-ray photoelectron spectroscopy: applications to the study of catalysts. J. Vac. Sci. Technol. A 38(3), 033204 (2020). https://doi.org/10.1116/1.5140747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Hosseini .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortiz Ortega, E., Hosseinian, H., Rosales López, M.J., Rodríguez Vera, A., Hosseini, S. (2022). Characterization Techniques for Chemical and Structural Analyses. In: Material Characterization Techniques and Applications. Progress in Optical Science and Photonics, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-16-9569-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9569-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9568-1

  • Online ISBN: 978-981-16-9569-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics