Skip to main content
Log in

Sorption of Cs and Sr radionuclides within natural carbonates

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Understanding the mobility of radiocesium and radiostrontium within geological environment is important from ‘deep geological repository system’—safety assessment point of view. Cs and Sr radionuclide sorption studies have been carried out with a stalagmite sample collected from Lesser—Himalayas. Detailed microstructural studies, backed up by micro-Raman and LIBS analyses, identified three different domains within the sample; constituted of microcrystalline calcite, botryoidal aragonite and palisadic calcite respectively. Experimental studies showed that both the radionuclides exhibit moderate to low sorption coefficients within all the different domains of stalagmite under acidic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Donald IW (2010) Waste immobilization in glass and ceramic based hosts. Wiely, Hoboken, p 493

    Book  Google Scholar 

  2. Ojovan MI, Lee WE (2005) An introduction to nuclear waste immobilization. Elsevier, Amsterdam, p 315

    Google Scholar 

  3. Sengupta P (2012) A review on immobilization of phosphate rich high level nuclear wastes within glass matrix—present status and future challenges. J Hazard Mater 235–236:17–28

    Article  Google Scholar 

  4. Sengupta P, Fanara S, Chakraborty S (2011) Preliminary study on calcium aluminosilicate glass as a potential host matrix for radioactive 90Sr—an approach based on natural analogue study. J Hazard Mater 190:229–239

    Article  CAS  Google Scholar 

  5. Sengupta P, Kaushik CP, Dey GK (2013) Immobilization of high level nuclear wastes: the Indian Scenario. In: Ramkumar M (ed) On a Sustainable Future of the Earth’s Natural Resources. Springer, Berlin, pp 25–51 ISBN: 978-3-642-32916-6, 2013

    Chapter  Google Scholar 

  6. Sengupta P, Dey KK, Halder R, Ajithkumar TG, Abraham G, Mishra RK, Kaushik CP, Dey GK (2015) Vanadium in borosilicate glass. J Am Ceram Soc 98:88–96

    Article  CAS  Google Scholar 

  7. Mishra RK, Sudarsan V, Sengupta P, Vatsa RK, Tyagi AK, Kaushik CP, Das D, Raj K (2008) Role of sulphate in structural modifications of sodium barium borosilicate glasses developed for nuclear waste immobilization. J Am Ceram Soc 91:3903–3907

    Article  CAS  Google Scholar 

  8. Mishra RK, Sengupta P, Kaushik CP, Tyagi AK, Kale GB, Raj K (2007) Studies on immobilization of thorium in barium borosilicate glass. J Nucl Mater 360:143–150

    Article  CAS  Google Scholar 

  9. Das N, Sengupta P, Roychowdhury S, Sharma G, Gawde PS, Arya A, Kain V, Kulkarni UD, Chakravartty JK, Dey GK (2012) Metallurgical characterizations of Fe–Cr–Ni–Zr base alloys developed for geological disposal of radioactive hulls. J Nucl Mater 420:559–574

    Article  CAS  Google Scholar 

  10. Grover V, Sengupta P, Bhanumurthy K, Tyagi AK (2006) Electron probe microanalysis (EPMA) investigations in the CeO2–ThO2–ZrO2 system. J Nucl Mater 350:169–172

    Article  CAS  Google Scholar 

  11. Jafar M, Sengupta P, Achary SN, Tyagi AK (2014) Structural and phase evolution studies in CaZrTi2O7–Nd2Ti2O7 systems. J Am Ceram Soc 97:609–616

    Article  CAS  Google Scholar 

  12. Jafar M, Sengupta P, Achary SN, Tyagi AK (2014) Phase evolution and microstructural studies in CaZrTi2O7 (zirconolite)-Sm2Ti2O7 (pyrochlore) system. J Euro Ceram Soc 34:4373–4381

    Article  CAS  Google Scholar 

  13. Sengupta P, Rogalla D, Becker HW, Dey GK, Chakraborty S (2011) Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory. J Hazard Mater 192:208–221

    CAS  Google Scholar 

  14. Sengupta P, Kaushik CP, Mishra RK, Kale GB (2007) Microstructural characterization and role of glassy layer developed on Inconel 690 during a nuclear high-level waste vitrification process. J Am Ceram Soc 90:3057–3062

    Article  CAS  Google Scholar 

  15. Sengupta P, Kaushik CP, Kale GB, Das D, Raj K, Sharma BP (2009) Evaluation of alloy 690 process pot at the contact with borosilicate melt pool during vitrification of high level nuclear waste. J Nucl Mater 392:379–385

    Article  CAS  Google Scholar 

  16. Ejeckam RB, Sherriff BL (2005) A 133Cs, 29Si, and 27Al MAS NMR spectroscopic study of Cs adsorption by clay minerals: implications for the disposal of nuclear wastes. Can Miner 43:1131–1140

    Article  CAS  Google Scholar 

  17. Kroupova H, Stamberg K (2005) Experimental study and mathematical modeling of Cs(I) and Sr(II) sorption on bentonite as barrier material in deep geological repository. Acta Geodyn Geomater 2:79–86

    Google Scholar 

  18. Yildiz B, Erten HN, Kis M (2011) The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal Nucl Chem 288:475–483

    Article  CAS  Google Scholar 

  19. Mukhopadhyay J, Sengupta P, Tyagi AK (2015) Uptake of Cs and Sr radionuclides within oleic acid coated nanomagnetite-nanohematite composite. J Nucl Mater 467:512–518

    Article  CAS  Google Scholar 

  20. Sengupta P, Dudwadkar NL, Vishwanadh B, Pulhani V, Rao R, Tripathi SC, Dey GK (2014) Uptake of hazardous radionuclides within layered chalcogenide for environmental protection. J Hazard Mater 266:94–101

    Article  CAS  Google Scholar 

  21. Baker A, Mockler NJ, Barnes WL (1999) Fluorescence intensity variations of speleothem-forming goundwaters: implications for palaeoclime reconstruction. Water Res 35:407–413

    Article  CAS  Google Scholar 

  22. Genty D, Baker A, Vokal B (2001) Intra- and inter-annual growth rate of modern stalagmites. Chem Geol 176:191–212

    Article  CAS  Google Scholar 

  23. Kuczumow A, Genty D, Chevallier P, Nowak J, Florek M, Buczynska A (2005) X-ray and electron microprobe investigation of the speleothems from Godarville tunnel. X-ray Spect 34:502–508

    Article  CAS  Google Scholar 

  24. Pflitsch A, Holmgren D (2014) Climate study in an abandoned auto tunnel in Alaska, USA, International workshop on Ice Caves VI, proceedings of NCKRI symposium, pp.77–81

  25. Webster JW, Brook GA, Railsback LB, Cheng H, Edwards RL, Alexander C, Reeder PP (2007) Stalagmite evidence from Belize indicating significant droughts at the time of preclassic abandonment, the Maya Hiatus, and the classic Maya collapse. Palaeogeogr Palaeoclimatol Palaeocol 250:1–17

    Article  Google Scholar 

  26. Boles JR (2004) Rapid growth of meter scale calcite speleothems in Mission Tunnel, Santa Barbara, CA. Water-rock interaction, Wanty, Seal II (eds), Taylor and Francis Group, London, pp. 353–356

  27. Serrano MJG, Salazar PA, Sanz LFA, Jimenez YJBG (2008) Fracture sealing by mineral precipitation in a Deep Geological Nuclear Waste Repository. Rev de la Socied Espanola de Miner 9:119–120

    Google Scholar 

  28. Gimeno MJ, Auque LF, Acero P, Gomez JB (2014) Hydrogeochemical characterization and modeling of groundwater in a potential geological repository for spent nuclear fuel in crystalline rocks (Laxemar, Sweden). Appl Geochem 45:50–71

    Article  CAS  Google Scholar 

  29. Quade J, Cerling TE (1990) Stable isotopic evidence for a pedogenic origin of carbonates in Trench 14 near Yucca Mountain, Nevada. Science 250:1549–1552

    Article  CAS  Google Scholar 

  30. Alvarez NO, Glaz L, Dmowski K, Ostrega BK (2014) Mobility of toxic elements in carbonate sediments from a mining area in Poland. Environ Chem Lett 12:435–441

    Article  Google Scholar 

  31. Mallampati SR, Mitoma Y, Okuda T, Sakita S, Kakeda M (2012) High immobilization of soil cesium using ball milling with nano-metallic Ca/CaO/NaH2PO4: implications for the remediation of radioactive soils. Environ Chem Lett 10:201–207

    Article  CAS  Google Scholar 

  32. Sengupta P, Sanwal J, Dudwadkar NL, Tripathi SC, Gandhi PM (2016) Adsorption of actinides within speleothem. Min Mag 80:765–780

    Article  CAS  Google Scholar 

  33. Sanwal J, Dudwadkar NL, Tripathi SC, Gandhi PM, Sengupta P (2016) Adsorption of 106Ru, 144Ce and 152+154Eu within natural calcium carbonates and its relevance in nuclear waste disposal. J Radioanal Nucl Chem 309:751–760

    CAS  Google Scholar 

  34. Arcos D, Grandia F, Domenech C, Fernandez AM, Villar MV, Muurinen A, Carlsson T, Sellin P, Hernan P (2008) Long term geochemical evolution of the near field repository: insights from reactive transport modeling and experimental evidences. J Cont Hydro 102:196–209

    Article  CAS  Google Scholar 

  35. Curti E (1999) Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Appl Geochem 14:433–445

    Article  CAS  Google Scholar 

  36. Nicot JP (2008) Methodology for bounding calculation of nuclear criticality of fissile material accumulations external to a waste container at Yucca Mountain, Nevada. Appl Geochem 23:2065–2081

    Article  CAS  Google Scholar 

  37. Steefel CI, Lichtner PC (1994) Diffusion and reaction in rock matrix bordering a hyperalkaline fluid filled fracture. Geochim Cosmochim Acta 58:3595–3612

    Article  CAS  Google Scholar 

  38. Ishikawa NK, Uchida S, Tagami K (2009) Radiocesium sorption behavior on illite, kaolinite, and their mixtures. Radioprotect 44:141–145

    Article  Google Scholar 

  39. Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: implications for 90Sr mobility at contaminated nuclear sites. Appl Geochem 27:1482–1491

    Article  CAS  Google Scholar 

  40. Seeprasert P, Yoneda M, Shimada Y, Matsui Y (2005) The sorption of cesium on Fungi cell: kinetic and isotherm study. Int J Pharm Med Bio Sci 4:110–114

    Google Scholar 

  41. Pors Nielsen S (2004) The biological role of strontium. Bone 35:583–588

    Article  CAS  Google Scholar 

  42. Cornell RM (1992) Adsorption behavior of cesium on marl. Clay Min 27:363–371

    Article  CAS  Google Scholar 

  43. Mukai H, Hirose A, Motai S, Kikuchi R, Tanoi K, Nakanishi TM, Yaita T, Kogure T (2016) Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima. Sci Rep 6:21543. doi:10.1038/serp21543

    Article  CAS  Google Scholar 

  44. Mishra S, Sahoo SK, Bossew P, Sorimachi A, Tokonami S (2016) Vertical migration of radio-cesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in undisturbed soils of grassland and forest. J Geochem Explor 169:163–186

    Article  CAS  Google Scholar 

  45. Chorover J, Choi S, Rotenberg P, Serne RJ, Rivera N, Strepka C, Thompson A, Mueller KT, O’Day PA (2008) Silicon control of strontium and cesium partitioning in hydroxide-weathered sediments. Geochim Cosmochim Acta 72:2024–2047

    Article  CAS  Google Scholar 

  46. Thompson A, Steefel CI, Perdrial N, Chorever J (2010) Contaminant desorption during long term leaching of hydroxide-weathered Hanford sediments. Environ Sci Technol 44:1992–1997

    Article  CAS  Google Scholar 

  47. Zachara JM, Smith SC, Liu C, McKiley JP, Serne RJ, Gassman PL (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim Cosmochim Acta 66:193–211

    Article  CAS  Google Scholar 

  48. Saunders JA, Toran LE (1995) Modelling of radionuclide and heavy metal sorption around low- and high-pH waste disposal sites at Oak Ridge, Tennessee. Appl Geochem 10:673–684

    Article  CAS  Google Scholar 

  49. Gu BH, Wu WM, Ginder-Vogel MA, Yan H, Fields MW, Zhou J, Fendorf S, Criddle CS, Jardine PM (2005) Bioreduction of uranium in a contaminated soil column. Env Sci Tech 39:4841–4847

    Article  CAS  Google Scholar 

  50. Gray J, Jones SR, Smith AD (1995) Discharges to the environment from the Sellafild site, 1951–1992. J Radiol Prot 15:99–131

    Article  CAS  Google Scholar 

  51. Strand P, Brown JE, Drozhko E, Mokrov Y, Saibu B, Oughton D, Christensen GC, Amundsen I (1999) Biogeochemical behavior of Cs-137 and Sr-90 in the artificial reservoirs of Mayak PA. Russia. Sci Total Environ 241:107–116

    Article  CAS  Google Scholar 

  52. Standring WJF, Oughton DH, Saibu B (2002) Potential remobilization of Cs-137, Co-60, Tc-99 and Sr-90 from contaminated Mayak sediments river and estuary environments. Environ Sci Tech 36:2330–2337

    Article  CAS  Google Scholar 

  53. Hakem NL, Mahamid IA, Apps JA, Moridis GJ (2000) Sorption of cesium and strontium on Hanford soil. J Radioanal Nucl Chem 246:275–278

    Article  CAS  Google Scholar 

  54. Steefel CI, Carroll S, Zhao P, Roberts S (2003) Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments. J Contam Hydrol 67:219–246

    Article  CAS  Google Scholar 

  55. de Konig A, Konoplev AV, Comans RNJ (2007) Measuring the specific cesium sorption capacity of soils, sediments and clay minerals. Appl Geochem 22:219–229

    Article  Google Scholar 

  56. Papelis C (2001) Cation and anion sorption on granite from the Project Shoal Test site, near Fallon, Nevada, USA. Adv Environ Res 5:151–166

    Article  CAS  Google Scholar 

  57. Tsai SC, Wang TH, Li MH, Wei YY, Teng SP (2009) Cesium adsorption and distribution onto crushed granite under different physiochemical conditions. J Hazard Mater 161:854–861

    Article  CAS  Google Scholar 

  58. Fuller AJ, Shaw S, Peacock CL, Trivedi D, Small JS, Abrahamsen LG, Burke IT (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl Geochem 40:32–42

    Article  CAS  Google Scholar 

  59. Kyllönen J, Hakanen M, Lindberg A, Harjula R, Vehkamäki M, Letho J (2014) Modeling of cesium sorption using cation exchange selectivity coefficients. Radiochim Acta 102:919–929

    Article  Google Scholar 

  60. Hoch AR, Baston GMN, Glasser FP, Hunter FMI, Smith V (2012) Modelling evolution in the near field of a cementitious repository. Min Mag 76:3055–3069

    Article  Google Scholar 

  61. Sanwal J, Kotlia BS, Rajendran CP, Ahmad SM, Rajendran K, Sandiford M (2013) Climatic variability in Central Indian Himalaya during the last ~1800 years: evidence from a high resolution speleothem record. Quater Int 304:183–192

    Article  Google Scholar 

  62. Chitnis RT, Rajappan SV, Kumar SV, Nadkarni MN (1979) Cation exchange separation of uranium and thorium; report BARC-1003. Bhabha Atomic Research Centre, Mumbai

    Google Scholar 

  63. Chen L, Xu J, Hu J (2013) Removal of U(VI) from aqueous solutions by using attapulgite/iron oxide magnetic nanocomposites. J Radioanal Nucl Chem 297:97–105

    Article  CAS  Google Scholar 

  64. Chen CL, Wang XK, Nagatsu M (2009) Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol 43:2362–2367

    Article  CAS  Google Scholar 

  65. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Sorption of Eu(III) on Attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol 43:5776–5782

    Article  CAS  Google Scholar 

  66. Mingming W, Hongqin X, Liqiang T, Jun Q, Xingquan T, Cuiping W (2012) Uptake properties of Eu(III) on Na-attapulgite as a function of pH, ionic strength and temperature. J Radioanal Nucl Chem 292:763–770

    Article  Google Scholar 

  67. Lu S, Chen L, Dong Y, Chen Y (2011) Adsorption of Eu(III) on iron oxide/multiwalled carbon nanotube magnetic composites. J Radioanal Nucl Chem 288:587–593

    Article  CAS  Google Scholar 

  68. Lu S, Bin M, Shuo W, Zhou J, Wang X (2015) Comparison sorption properties of Eu(III) on titanate nanotubes and rutile studied by batch technique. J Radioanal Nucl Chem 306:527–534

    Article  CAS  Google Scholar 

  69. Song W, Wang X, Wang Q, Shao D, Wang X (2015) Plasma-induced grafting of polyacrylamide on grapheme oxide nanosheets for simultaneous removal of radionuclides. Phys Chem Chem Phys 17:398–406

    Article  CAS  Google Scholar 

  70. Sun Y, Li J, Wang X (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643

    Article  CAS  Google Scholar 

  71. Tan X, Fan Q, Wang X, Grambow B (2009) Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies. Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  72. Yang S, Sheng G, Montavon G, Guo Z, Tan X, Grambow B, Wang X (2013) Investigation of Eu(III) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analyses: role of contact time and humic acid. Geochim Cosmochim Acta 121:84–104

    Article  CAS  Google Scholar 

  73. Wang X, Li J, Dai S, Hayat T, Alsaedi A, Wang X (2015) Interactions of Eu(III) and 243Am(III) with humic acid-bound γ-Al2O3 studied using batch and kinetic dissociation techniques. Chem Eng J 273:588–594

    Article  CAS  Google Scholar 

  74. Wang X, Lu S, Chen L, Li J, Dai S, Wang X (2015) Efficient removal of Eu(III) from aqueous solutions using super-adsorbent of bentonite-polyacrylamide composites. J Radioanal Nucl Chem 306:497–505

    Article  CAS  Google Scholar 

  75. Wang X, Lu S, Liu M (2015) Effect of environmental conditions on the sorption of radiocobalt on titanate/grapheme oxide composites. J Radioanal Nucl Chem 303:2391–2398

    CAS  Google Scholar 

  76. Chada VGR, Hausner DB, Strongin DR, Rouff AA, Reeder RJ (2005) Diavalent Cd and Pb uptake on calcite [104] cleavage faces: an XPS and AFM study. J Colloid Interface Sci 288:350–360

    Article  CAS  Google Scholar 

  77. Ishikawa M, Ichikuni M (1984) Uptake of sodium and potassium by calcite. Chem Geol 42:137–146

    Article  CAS  Google Scholar 

  78. Stipp SL, Hochella MF, Parks GA, Leckie JO (1992) Cd2+ uptake by calcite, Solid state diffusion, and the formation of solid–solution interface processes observed with near surface sensitive techniques (XPS, LEED and AES). Geochim Cosmochim Acta 56:1941–1954

    Article  CAS  Google Scholar 

  79. Ricci M, Spijker P, Stellacci F, Molinari JF, Voitchovsky K (2013) Direct visualization of single ions in the stern layer of calcite. Langmuir 29:2207–2216

    Article  CAS  Google Scholar 

  80. Careche M, Herrero AM, Carmona P (2002) Raman analysis of white spots appearing in the shell of Argentine red shrimp (Pleoticus muelleri) during frozen storage. J Food Sci 67:2892–2895

    Article  CAS  Google Scholar 

  81. Mikkelsen A, Andersen AB, Engelsen SB, Hansen HCB, Larsen O, Skibsted LH (1999) Presence and dehydration of ikaite, calcium carbonate hexahydrate, in frozen shrimp shell. J Agri Food Chem 47:911–917

    Article  CAS  Google Scholar 

  82. Fairchild IJ, Baker Andy (2012) Speleothem science: from process to past environments. Wiley, Hoboken, p 450

    Book  Google Scholar 

  83. Sturchio M, Antonio L, Soderholm S, Sutton J (1998) Tetravalent uranium in calcite. Science 281:971–973

    Article  CAS  Google Scholar 

  84. Zhong S, Mucci A (1995) Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations. Geochim Cosmochim Acta 59:443–453

    Article  CAS  Google Scholar 

  85. Cappellen PV, Charlet L, Stumm W, Wersin P (1993) A surface complexation model of the carbonate mineral-aqueous solution interface. Geochim Cosmochim Acta 57:3505–3518

    Article  Google Scholar 

  86. Hoffmann S, Voitchovsky K, Spijker P, Schmidt M, Stumpf T (2016) Visualising the molecular alteration of the calcite (104)—water interface by sodium nitrate. Sci Rep 6:21576. doi:10.1038/serp21576

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. G.K. Dey, Associate Director, Materials Group, BARC, Dr. Ajay K Singh, RPCD, BARC and Prof. K.S. Valdiya, Prof. B.S. Kotlia, Prof. C.P. Rajendran and Prof. Kusala Rajendran for their support. Two anonymous reviewers and Handling Editor are profusely thanked for their very valuable and constructive suggestions. The work was funded by Department of Atomic Energy, Government of India. JS acknowledges DST SERC Fast Track Scheme (No. SR/FTP/ES-97/2009) for financial assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranesh Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, P., Sanwal, J., Mathi, P. et al. Sorption of Cs and Sr radionuclides within natural carbonates. J Radioanal Nucl Chem 312, 19–28 (2017). https://doi.org/10.1007/s10967-017-5206-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5206-1

Keywords

Navigation