Skip to main content
Log in

Sorption studies of radionuclides on argillaceous clays of Cuddapah System

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Worldwide argillaceous clays are being studied as promising host rock for nuclear high level waste disposal. Cuddapah argillite is under evaluation for Indian clay rock based repository. Herein characterization of this clay and evaluation for its sorption characteristics towards Cs(I) and Eu(III) has been studied. Surface complexation modeling of Cs(I) sorption on argillaceous clay revealed that Cs(I) is sorbed on high as well as low affinity ion exchange sites. In modeling of Eu(III) sorption data, surface complexes of Eu(III) and europium carbonate species, along with ion exchange reaction, reproduced the sorption profile with ankerite dissolution influencing distribution of various surface complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nagra project Opalinus clay: safety report (2002). Demonstration of disposal feasibility (Entsorgungsnachweis) for spent fuel, vitrified high-level waste and long-lived intermediate-level waste. Nagra Technical Report NTB 02-05. Nagra, Wettingen

  2. Lázár K, Máthé Z (2012) In: Valaskova M (ed) Claystone as a potential host rock for nuclear waste storage, clay minerals in nature—their characterization, modification and application. In Tech, Rijeka, p 55

  3. Renauld V, Habrant N (2001) Andra Référentielgéologique du site de Meuse/Haute Marne. Rapp. A RP ADS99-005 de l’Agencenationale pour la gestion des déchetsradioactifs, Châtenay-Malabry

  4. Ondraf (2001) SAFIR 2: safety assessment and feasibility interim report 2. NIROND-2001-06 E. Ondraf, Brussels

  5. Mell P, Megyeri J, Riess L, Máthé Z, Csicsák J, Lázár K (2006) Sorption of Co, Cs, Sr and I onto argillaceous rock as studied by radiotracers. J Radioanal Nucl Chem 268:405–410

    Article  CAS  Google Scholar 

  6. Mell P, Megyeri J, Riess L, Máthé Z, Csicsák J, Lázár K (2006) Sorption of Co, Cs, Sr and I onto argillaceous rock as studied by radiotracers. J Radioanal Nucl Chem 268:411–417

    Article  CAS  Google Scholar 

  7. Savoye S, Goutelard F, Beaucaire C, Charles Y, Fayette A, Herbette M, Larabi Y, Coelho D (2011) Effect of temperature on the containment properties of argillaceous rocks: the case study of Callovo-Oxfordian claystones. J Contam Hydrol 125:102–112

    Article  CAS  Google Scholar 

  8. Fernandes MM, Vér N, Baeyens B (2015) Predicting the uptake of Cs Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl Geochem 59:189–199

    Article  Google Scholar 

  9. Bradbury MH, Baeyens B (2011) Predictive sorption modelling of Ni(II), Co(II), Eu(IIII), Th(IV) and U(VI) on MX-80 bentonite and Opalinus clay: a bottom-up approach. Appl Clay Sci 52:27–33

    Article  CAS  Google Scholar 

  10. Bradbury MH, Baeyens B (2000) A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J Contam Hydrol 42:141–163

    Article  CAS  Google Scholar 

  11. Breitner D, Osan J, Fabian M, Zagyvai P, Szabo C, Dahn R, Fernandes MM, Sajo IE, Mathe Z, Torok S (2015) Characteristics of uranium uptake of Boda Claystone Formation as the candidate host rock of high level radioactive waste repository in Hungary. Environ Earth Sci 73:209–219

    Article  CAS  Google Scholar 

  12. Joseph C, Stockman M, Schmeide K, Sachs S, Brendler V, Geipel G, Bernhard G (2011) Sorption of uranium(VI) onto Opalinus clay in the absence and presence of humic acid in Opalinus clay pore water. Chem Geol 284:240–250

    Article  CAS  Google Scholar 

  13. Fröhlich DR, Amayri S, Drebert J, Reich T (2011) Sorption of neptunium(V) on Opalinus clay under aerobic/anaerobic conditions. Radiochim Acta 99:71–77

    Article  Google Scholar 

  14. Wu T, Amayri S, Drebert J, Vanloon L, Reich T (2009) Neptunium(V) sorption and diffusion in Opalinus clay. Environ Sci Technol 243:6567–6571

    Article  Google Scholar 

  15. Reich T, Amayri S, Börner PJB, Drebert J, Fröhlich DR, Grolimund D, Kaplan U (2016) Speciation of neptunium during sorption and diffusion in natural clay. J Phys Conf Ser 712:012081. doi:10.1088/1742-6596/712/1/012081

    Article  Google Scholar 

  16. Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clay Clay Miner 47:386–388

    Article  CAS  Google Scholar 

  17. Kumar S, Pente AS, Bajpai RK, Kaushik CP, Tomar BS (2013) Americium sorption on smectite-rich natural clay from granitic ground water. Appl Geochem 35:28–34

    Article  CAS  Google Scholar 

  18. Bradbury MH, Baeyens B (2002) Sorption of Eu on Na- and Ca–montmorillonite: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66:2325–2334

    Article  CAS  Google Scholar 

  19. Bradbury MH, Baeyens B (2006) Modelling sorption data for the actinides Am(III), Np(V) and Pa(V) on montmorillonite. Radiochim Acta 94:619–625

    Article  CAS  Google Scholar 

  20. Herbelin AL, Westall JC (1999) FITEQL, a computer program for determination of chemical equilibrium constant from experimental data. Department of Chemistry, Oregon State University, Oregon

  21. Grim RE (1953) Clay mineralogy. McGraw-Hill, New York

    Google Scholar 

  22. Zhang CL, Wieczorek K, Xie ML (2010) Swelling experiments on mudstones. J Rock Mech Geotech Eng 2:44–51

    Article  Google Scholar 

  23. Zhu X, Cai J, Song G, Ji J (2015) Factors influencing the specific surface areas of argillaceous source rocks. Appl Clay Sci 109–110:83–94

    Article  Google Scholar 

  24. Wenk HR, Voltolini M, Mazurek M, VanLoon LR, Vinsot A (2008) Preferred orientations and anisotropy in shales: callovo-oxfordian shale (France) and Opalinus clay (Switzerland). Clays Clay Miner 56:285–306

    Article  CAS  Google Scholar 

  25. Nadeau PH (1998) An experimental study of the effects of diagenetic clay minerals on reservoir sands. Clays Clay Miner 46:18–26

    Article  CAS  Google Scholar 

  26. Pearson FJ, Arcos D, Bath A, Boisson JY, Fernández AM, Gäbler, HE, Gaucher E, Gautschi A, Griffault L, Hernán P, Waber HN (2003) Mont Terri Project—geochemistry of water in the Opalinus clay formation at the Mont Terri Rock Laboratory, geology series no. 5, Bern

  27. Craen MD, Wang L, Van Geet M, Moors H (2004) Geochemistry of boom clay pore water at the Mol site, Scientific Report SCK·CEN-BLG-990, 04/MDC/P-48, Belgium

  28. Fedor F, Hámos G, Jobbik A, Máthé Z, Somodi G, Szucs I (2008) Laboratory pressure pulse decay permeability measurement of Boda Claystone, Mecsek Mts, SW Hungary. Phys Chem Earth 33:S45–S53

    Article  Google Scholar 

  29. Lujaniene G, Mazeika K, Sapolaite J, Amulevicius A, Motiejunas S (2006) Kinetics of Cs sorption to clay minerals. Lith J Phys 46:375–382

    Article  CAS  Google Scholar 

  30. Lujanienė G, Beneš P, Štamberg K, Ščiglo T (2012) Kinetics of plutonium and americium sorption to natural clay. J Environ Radioact 108:41–49

    Article  Google Scholar 

  31. Fuller AJ, Shaw S, Peacock CL, Trivedi D, Small JS, Abrahamsen LG, Burke IT (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl Geochem 40:32–42

    Article  CAS  Google Scholar 

  32. Kasar S, Kumar S, Bajpai RK, Tomar BS (2016) Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay. J Environ Radioact 151:218–223

    Article  CAS  Google Scholar 

  33. Poinssot C, Baeyens B, Bradbury MH (1999) Experimental and modelling studies of caesium sorption on illite. Geochim Cosmochim Acta 63:3217–3227

    Article  CAS  Google Scholar 

  34. Bradbury MH, Baeyens B, Geckeis H, Rabung TH (2005) Sorption of Eu(III)/Cm(III) on Ca–montmorillonite and Na–illite. Part 2: surface complexation modeling. Geochim Cosmochim Acta 69:5403–5412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Balaji Mandal for XRD measurements and ascertaining mineralogical composition of argillaceous clays, Ms. Annapurna Chandane and Dr. S. Jeyakumar for Ca analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishwarya S. Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.A., Kar, A.S., Garg, D. et al. Sorption studies of radionuclides on argillaceous clays of Cuddapah System. J Radioanal Nucl Chem 313, 555–563 (2017). https://doi.org/10.1007/s10967-017-5299-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5299-6

Keywords

Navigation