Skip to main content
Log in

In situ preparation of mycelium/bayberry tannin for the removal of strontium from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new sustainable filamentous fungi-based process is reported to synthesize mycelium/bayberry tannin (BT) hybrid materials. The hybrid materials are produced with fungi growing in solution, where the cell wall interacted with BT by hydrogen-bond from the phenolic hydroxyl and amino in protein. In the adsorption experiment, This hybrid biologic material show excellent performances for strontium ions adsorption and experimental data obey a pseudo second-order model of the chemical adsorption process. This study reported a new method for the producing of bio-based materials, which had the potential applications in waste water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu C, Wang J, Chen J (2012) Solvent extraction of strontium and cesium: a review of recent progress. Solvent Extr Ion Exch 30(6):623–650. doi:10.1080/07366299.2012.700579

    Article  CAS  Google Scholar 

  2. Huang X, Li L, Liao X, Shi B (2010) Preparation of platinum nanoparticles supported on bayberry tannin grafted silica bead and its catalytic properties in hydrogenation. J Mol Catal A 320(1–2):40–46. doi:10.1016/j.molcata.2009.12.013

    Article  CAS  Google Scholar 

  3. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. J Hazard Mater 152(2):632–639. doi:10.1016/j.jhazmat.2007.07.026

    Article  CAS  Google Scholar 

  4. Murilode OS, Ribeiro MA, Carneiro MTWD, Athayde GPB, de Castro EVR, da Silva FLF, Matos WO, de Queiroz Ferreira R (2015) Evaluation and determination of chloride in crude oil based on the counterions Na, Ca, Mg, Sr and Fe, quantified via ICP-OES in the crude oil aqueous extract. Fuel 154:181–187. doi:10.1016/j.fuel.2015.03.079

    Article  Google Scholar 

  5. Faghihian H, Iravani M, Moayed M, Ghannadi-Maragheh M (2013) Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: kinetic, equilibrium, and thermodynamic studies. Chem Eng J 222:41–48. doi:10.1016/j.cej.2013.02.035

    Article  CAS  Google Scholar 

  6. Kaçan E, Kütahyalı C (2012) Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges. J Anal Appl Pyrolysis 97:149–157. doi:10.1016/j.jaap.2012.06.006

    Article  Google Scholar 

  7. Chaalal O, Zekri AY, Soliman AM (2015) A novel technique for the removal of strontium from water using thermophilic bacteria in a membrane reactor. J Ind Eng Chem 21:822–827. doi:10.1016/j.jiec.2014.04.018

    Article  CAS  Google Scholar 

  8. Fonollosa E, Nieto A, Penalver A, Aguilar C, Borrull F (2015) Presence of radionuclides in sludge from conventional drinking water treatment plants. A review. J Environ Radioact 141:24–31. doi:10.1016/j.jenvrad.2014.11.017

    Article  CAS  Google Scholar 

  9. Del Buffa S, Bonini M, Ridi F, Severi M, Losi P, Volpi S, Al Kayal T, Soldani G, Baglioni P (2015) Design and characterization of a composite material based on Sr(II)-loaded clay nanotubes included within a biopolymer matrix. J Colloid Interface Sci 448:501–507. doi:10.1016/j.jcis.2015.02.043

    Article  Google Scholar 

  10. Nishiyama Y, Hanafusa T, Yamashita J, Yamamoto Y, Ono T (2015) Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4228-9

    Google Scholar 

  11. Villard A, Siboulet B, Toquer G, Merceille A, Grandjean A, Dufreche JF (2015) Strontium selectivity in sodium nonatitanate Na(4)Ti(9)O(2)(0)·xH(2)O. J Hazard Mater 283:432–438. doi:10.1016/j.jhazmat.2014.09.039

    Article  CAS  Google Scholar 

  12. Fontes AM, Geris R, dos Santos AV, Pereira MG, Ramalho JG, da Silva AF, Malta M (2014) Bio-inspired gold microtubes based on the morphology of filamentous fungi. Biomater Sci 2(7):956–960. doi:10.1039/C4BM00030G

    Article  CAS  Google Scholar 

  13. Kumar SA, Ansary AA, Ahmad A, Khan M (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3(2):190–194. doi:10.1166/j.bn.2007.027

    Article  CAS  Google Scholar 

  14. Gurung M, Adhikari BB, Morisada S, Kawakita H, Ohto K, Inoue K, Alam S (2013) N-aminoguanidine modified persimmon tannin: a new sustainable material for selective adsorption, preconcentration and recovery of precious metals from acidic chloride solution. Bioresour Technol 129:108–117. doi:10.1016/j.biortech.2012.11.012

    Article  CAS  Google Scholar 

  15. McSweeney CSPB, McNeill DM et al (2001) Microbial interactions with tannins: nutritional consequences for ruminants. Anim Feed Sci Technol 91:83–93. doi:10.1016/S0377-8401(01)00232-2

    Article  CAS  Google Scholar 

  16. Zhou Z, Liu F, Huang Y, Wang Z, Li G (2015) Biosorption of palladium(II) from aqueous solution by grafting chitosan on persimmon tannin extract. Int J Biol Macromol 77:336–343. doi:10.1016/j.ijbiomac.2015.03.037

    Article  CAS  Google Scholar 

  17. Li W, Tang Y, Zeng Y, Tong Z, Liang D, Cui W (2012) Adsorption behavior of Cr(VI) ions on tannin-immobilized activated clay. Chem Eng J 193–194:88–95. doi:10.1016/j.cej.2012.03.084

    Google Scholar 

  18. Huang X, Wang Y, Liao X, Shi B (2010) Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica. J Hazard Mater 183(1–3):793–798. doi:10.1016/j.jhazmat.2010.07.096

    Article  CAS  Google Scholar 

  19. Li B, Ma L, Tian Y, Yang X, Li J, Bai C, Yang X, Zhang S, Li S, Jin Y (2014) A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium. J Hazard Mater 271:41–49. doi:10.1016/j.jhazmat.2014.01.060

    Article  CAS  Google Scholar 

  20. Huang X, Liao X, Shi B (2009) Hg(II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber. J Hazard Mater 170(2–3):1141–1148. doi:10.1016/j.jhazmat.2009.05.086

    Article  CAS  Google Scholar 

  21. Chen J, Sun X, Weng W, Guo H, Hu S, He Y, Li F, Wu W (2015) Recovery and investigation of Cu(II) ions by tannin immobilized porous membrane adsorbent from aqueous solution. Chem Eng J 273:19–27. doi:10.1016/j.cej.2015.03.031

    Article  CAS  Google Scholar 

  22. Peng Z, Zhong H (2013) Synthesis and properties of tannic acid-based hydrogels. J Macromol Sci B 53(2):233–242. doi:10.1080/00222348.2013.810094

    Article  Google Scholar 

  23. Frazier RA, Deaville ER, Green RJ, Stringano E, Willoughby I, Plant J, Mueller-Harvey I (2010) Interactions of tea tannins and condensed tannins with proteins. J Pharm Biomed Anal 51(2):490–495. doi:10.1016/j.jpba.2009.05.035

    Article  CAS  Google Scholar 

  24. Lorenz MM, Alkhafadji L, Stringano E, Nilsson S, Mueller-Harvey I, Uden P (2014) Relationship between condensed tannin structures and their ability to precipitate feed proteins in the rumen. J Sci Food Agric 94(5):963–968. doi:10.1002/jsfa.6344

    Article  CAS  Google Scholar 

  25. Kurokawa T, Tominaga T, Katsuyama Y, Kuwabara R, Furukawa H, Osada Y, Gong JP (2005) Elastic–hydrodynamic transition of gel friction. Langmuir ACS J Surf Colloids 21(19):8643–8648. doi:10.1021/la050635h

    Article  CAS  Google Scholar 

  26. Owades J, Rubin G, Brenner M (1958) Food tannins measurement, determination of food tannins by ultraviolet spectrophotometry. J Agric Food Chem 6(1):44–46. doi:10.1021/jf60083a008

    Article  CAS  Google Scholar 

  27. Botubol JM, Macías-Sánchez AJ, Collado IG, Hernández-Galán R (2013) Stereoselective synthesis and absolute configuration determination of xylariolide A. Eur J Org Chem 12:2420–2427. doi:10.1002/ejoc.201201526

    Article  Google Scholar 

  28. Liu Y, Wang W, Wang A (2010) Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly(acrylic acid)/attapulgite hydrogel composites. Desalination 259(1–3):258–264. doi:10.1016/j.desal.2010.03.039

    Article  CAS  Google Scholar 

  29. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. doi:10.1021/ja02242a004

    Article  CAS  Google Scholar 

  30. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57(385):e470

    Google Scholar 

  31. Tu Y-J, You C-F, Chen Y-R, Huang C-P, Huang Y-H (2015) Application of recycled iron oxide for adsorptive removal of strontium. J Taiwan Inst Chem Eng 53:92–97. doi:10.1016/j.jtice.2015.02.020

    Article  CAS  Google Scholar 

  32. Cheng Z, Gao Z, Ma W, Sun Q, Wang B, Wang X (2012) Preparation of magnetic Fe3O4 particles modified sawdust as the adsorbent to remove strontium ions. Chem Eng J 209:451–457. doi:10.1016/j.cej.2012.07.078

    Article  CAS  Google Scholar 

  33. Liu F, Liu Y, Xu Y, Ni L, Meng X, Hu Z, Zhong G, Meng M, Wang Y, Han J (2015) Efficient static and dynamic removal of Sr(II) from aqueous solution using chitosan ion-imprinted polymer functionalized with dithiocarbamate. J Environ Chem Eng 3(2):1061–1071. doi:10.1016/j.jece.2015.03.014

    Article  CAS  Google Scholar 

  34. Wang X, Yu J (2015) Application of Fe3O4/graphene oxide composite for the separation of Cs(I) and Sr(II) from aqueous solution. J Radioanal Nucl Chem 303(1):807–813. doi:10.1007/s10967-014-3431-4

    Article  CAS  Google Scholar 

  35. Song D, Park S-J, Kang HW, Park SB, Han J-I (2013) Recovery of lithium(I), strontium(II), and lanthanum(III) using Ca-alginate beads. J Chem Eng Data 58(9):2455–2464. doi:10.1021/je400317v

    Article  CAS  Google Scholar 

  36. Marešová J, Pipíška M, Rozložník M, Horník M, Remenárová L, Augustín J (2011) Cobalt and strontium sorption by moss biosorbent: modeling of single and binary metal systems. Desalination 266(1):134–141. doi:10.1016/j.desal.2010.08.014

    Article  Google Scholar 

  37. Song Y, Du Y, Lv D, Ye G, Wang J (2014) Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study. J Hazard Mater 274:221–228. doi:10.1016/j.jhazmat.2014.04.010

    Article  CAS  Google Scholar 

  38. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. doi:10.1016/j.biortech.2013.12.102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (12zxnp08); Projects in the Sichuan Province Science and Technology Pillar Program (14zs2122), Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory (14zxnk02, 13zxnk02), Plan Projects of Mianyang Science and Technology (15zd2110, 15zd2102), Doctoral Research Fund Project of Southwest University of Science and Technology (15zx7130), Innovation Fund of Mianyang Technology Enterprise (14mlsy001), the Open Foundation of Laboratory for Extreme Conditions Matter Properties (Grant No. 14tdjk02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Duan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yao, W., Zhu, W. et al. In situ preparation of mycelium/bayberry tannin for the removal of strontium from aqueous solution. J Radioanal Nucl Chem 310, 495–504 (2016). https://doi.org/10.1007/s10967-016-4808-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4808-3

Keywords

Navigation