Skip to main content
Log in

Recent results from the AMS/IBA laboratory at the Comenius University in Bratislava: preparation of targets and optimization of ion sources

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Developments of solid targets and optimizations of ion sources were carried out with the aim to produce high ion yields for applications of tandem accelerators as mass spectrometers. A comparison of Al yields from different aluminum targets showed that the best results were obtained with AlN targets. Transmission studies of 9Be and 12C ions through the Pelletron accelerator showed highest efficiencies for 9Be2+ and 12C2+. First results obtained with a simplified version of the AMS line are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tuniz C, Bird JR, Fink D, Herzog GF (1998) Accelerator mass spectrometry: ultrasensitive analysis for global science. CRC Press, Boca Raton

    Google Scholar 

  2. Kutschera W (2005) Intern J Mass Spectrom 242:145–160

    Article  CAS  Google Scholar 

  3. Povinec PP (2005) J Radioanal Nucl Chem 263:413–417

    Article  CAS  Google Scholar 

  4. Povinec PP, Sanchez-Cabeza JA (eds) (2006) Radionuclides in the environment. Elsevier, Amsterdam

    Google Scholar 

  5. Povinec PP (ed) (2008) Analysis of environmental radionuclides. Elsevier, Amsterdam

    Google Scholar 

  6. Povinec PP (2008) J Radioanal Nucl Chem 276:771–777

    Article  CAS  Google Scholar 

  7. Povinec PP, Betti M, Jull AJT, Vojtyla P (2008) Acta Phys Slovaca 58:1–154

    Article  CAS  Google Scholar 

  8. Lee SH, Povinec PP, Gastaud J, La Rosa J, Wyse E, Fifield LK (2009) J Radioanal Nucl Chem 282:831–835

    Article  CAS  Google Scholar 

  9. Lehto J, Hou XL (2010) Chemistry and analysis of radionuclides. Wiley, Weinheim

    Book  Google Scholar 

  10. Povinec PP (2004) In: Livingston HD (ed) Marine radioactivity. Elsevier, Amsterdam

    Google Scholar 

  11. Povinec PP, Eriksson M, Scholten J, Betti M (2012) In: Annunziata M (ed) Handbook of radioactivity measurement. Elsevier, Amsterdam

    Google Scholar 

  12. Povinec PP (2013) J Radioanal Nucl Chem 295:537–544

    Article  CAS  Google Scholar 

  13. Povinec PP, Comanducci JF, Levy-Palomo I (2004) Appl Rad Isotopes 61:85–93

    Article  CAS  Google Scholar 

  14. Povinec PP, Comanducci JF, Levy-Palomo I (2005) J Radioanal Nucl Chem 263:441–445

    Article  CAS  Google Scholar 

  15. Povinec PP (2012) J Anal Sci Technol 3:42–71

    Article  CAS  Google Scholar 

  16. Povinec PP, Lee SH, Kwong LLW, Oregioni B, Jull AJT, Kieser WE, Morgenstern U, Top Z (2010) Nucl Instrum Meth Phys Res B 268:1214–1218

    Article  CAS  Google Scholar 

  17. Povinec PP, Zenisova Z, Sivo A, Ogrinc N, Richtáriková M, Breier R (2013) Radiocarbon 55:1017–1028

    Article  CAS  Google Scholar 

  18. Povinec PP, Breier R, Coppola L, Groening M, Jeandel C, Jull AJT, Kieser WE, Lee SH, Kwong LLW, Morgenstern U, Top Z (2011) Earth Planet Sci Lett 302:14–26

    Article  CAS  Google Scholar 

  19. Fabel D, Stroeven AP, Harbor J, Kleman J, Elmore D, Fink D (2002) Earth Plant Sci Lett 201:397–406

    Article  CAS  Google Scholar 

  20. Povinec PP, Laubenstein M, Ferrière L, Brandstätter F, Sýkora I, Kováčik A, Jull AJT, Topa D, Koeberl C (2015) Meteor Planet Sci 50:273–286

    Article  CAS  Google Scholar 

  21. Poutivtsev M, Dillmann I, Faestermann T, Knie K, Korschinek G, Lachner J, Meier A, Rugel G, Wallner A (2010) Nucl Inst Meth Phys Res B 268:756–758

    Article  CAS  Google Scholar 

  22. Jull AJT, McHargue LR, Bland PA, Greenwood RC, Bevan AWR, Kim KJ, Giscard MD, LaMotta SE, Johnson JA (2010) Meteor Planet Sci 45:1271–1283

    Article  CAS  Google Scholar 

  23. Leya I, Welten KC, Nishiizumi K, Caffee MW (2009) Meteor Planet Sci 44:77–85

    Article  CAS  Google Scholar 

  24. Molnár M, Major I, Haszpra L, Svetlik I, Svingor E, Veres M (2010) J Radioanal Nucl Chem 286:471–476

    Article  Google Scholar 

  25. Povinec PP, Svetlik I, Ješkovský M, Šivo A, John J, Špendlíková I, Němec M, Kučera J, Richtáriková M, Breier R, Fejgl M, Černý R (2015) J Radioanal Nucl Chem 304:67–73

    Article  CAS  Google Scholar 

  26. Livingston HD, Povinec PP (2000) Ocean Coast Manag 43:689–712

    Article  Google Scholar 

  27. Steier P, Hrnecek E, Priller A, Quinto F, Srncik M, Wallner G, Winkler S (2013) Nucl Instrum Methods Phys Res B 294:160–164

    Article  CAS  Google Scholar 

  28. Lujaniené G, Beneš P, Štamberg K, Šapolaite J, Vopalka D, Radžiute E, Ščiglo T (2010) J Radioanal Nucl Chem 286:353–359

    Article  Google Scholar 

  29. Povinec PP, Oregioni B, Jull AJT, Kieser WE, Zhao XL (2000) Nucl Instrum Meth Phys Res B 172:672–678

    Article  CAS  Google Scholar 

  30. Povinec PP, Hirose K, Aoyama M (2013) Fukushima accident: radioactivity impact on the environment. Elsevier, New York

    Book  Google Scholar 

  31. Levy I, Povinec PP, Aoyama M, Hirose K, Sanchez-Cabeza JA, Comanducci J-F, Gastaud J, Eriksson M, Hamajima Y, Kim CS, Komura K, Osvath I, Roos P, Yim SA (2011) Prog Oceanogr 89:120–133

    Article  Google Scholar 

  32. Povinec PP (2011) J Anal Sci Technol 2(Suppl A):A15–A21

    Article  CAS  Google Scholar 

  33. Povinec PP, Hirose K (2015) Sci Rep 5:9016. doi:10.1038/srep09016

    Article  CAS  Google Scholar 

  34. Steinhauser G (2014) Environ Sci Technol 48(9):4649–4663

    Article  CAS  Google Scholar 

  35. Hou XL, Povinec PP, Zhang LY, Biddulph D, Chang C-C, Fan YK, Golser R, Jeskovsky M, Jull AJT, Liu Q, Shi KL, Steier P, Zhou WJ (2013) Environ Sci Technol 47:3091–3098

    CAS  Google Scholar 

  36. Povinec PP, Aoyama M, Biddulph D, Breier B, Buesseler K, Chang CC, Golser R, Hou XL, Jeskovsky M, Jull AJT, Kaizer J, Nakano M, Nies H, Palcsu L, Papp L, Pham MK, Steier P, Zhang LY (2013) Biogeosciences 10:5481–5496

    Article  Google Scholar 

  37. Lee SH, Povinec PP, Wyse E, Hotchkis MAC (2008) Appl Rad Isotopes 66:823–828

    Article  CAS  Google Scholar 

  38. Zheng J, Tagami K, Homma-Takedaa S, Buab W (2013) J Anal At Spectrom 28:1676–1699

    Article  CAS  Google Scholar 

  39. Jeynes C, Webb RP, Lohstroh A (2011) Rev Accel Sci Technol 4:41–82

    Article  Google Scholar 

  40. Hosemann P (2011) Rev Accel Sci Technol 4:161–182

    Article  Google Scholar 

  41. Liong Wee Kwong L, Povinec PP, Jull AJT (2004) Radiocarbon 46:133–139

    Google Scholar 

  42. Vogel JS, Southon JR, Nelson DE, Brown TA (1984) Nucl Instrum Meth Phys Res B 5:289–293

    Article  Google Scholar 

  43. Povinec PP, Masarik J, Kúš P, Holý K, Ješkovský M, Breier R, Staníček J, Šivo A, Richtáriková M, Kováčik A, Szarka J, Steier P, Priller AA (2015) Nucl Instrum Meth Phys Res B 342:321–326

    Article  CAS  Google Scholar 

  44. Povinec PP, Masarik J, Ješkovský M, Kaizer J, Šivo A, Breier R, Pánik J, Staníček J, Richtáriková M, Zahoran M, Zeman J (2015) Nucl Instrum Meth Phys Res B. doi:10.1016/j.nimb.2015.02.021

    Google Scholar 

  45. Povinec PP, Šivo A, Ješkovský M, Svetlik I, Richtáriková M, Kaizer J (2015) Radiocarbon 57:355–362

    Article  Google Scholar 

  46. Flarend R et al (2004) Nucl Instrum Meth Phys Res B 223–224:263–267

    Article  Google Scholar 

  47. Sharma P et al (2000) Nucl Instrum Meth Phys Res B 172:112–123

    Article  CAS  Google Scholar 

  48. Ješkovský M, Steier P, Priller A, Breier R, Povinec PP, Golser R (2015) Nucl Instrum Meth Phys Res B. doi:10.1016/j.nimb.2015.04.072

    Google Scholar 

  49. Stocker M, Döbeli M, Grajcar M, Suter M, Synal H-A, Wacker L (2005) Nucl Instrum Meth Phys Res B 240:483–486

    Article  CAS  Google Scholar 

  50. Christl M, Lachner J, Vockenhuber C, Lechtenfeld O, Stimac I, van der Loeff MR, Synal H-A (2012) Geochim Cosmochim Acta 77:98–107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A support provided by the EU Research and Development Operational Program funded by the ERDF (projects Nos. 26240120012, 26240120026 and 26240220004) has been crucial for establishing the CENTA laboratory. The authors are also acknowledging support from the Technical Cooperation Program of the International Atomic Energy Agency (project No. SLR/0/008), and from the Nuclear Regulatory Authority of the Slovak Republic. They are also indebted to Profs. R. Golser, A. Priller, and P. Steier of the Vienna University for support during development of the AMS system. The staff of the Comenius University is acknowledged for assistance during various stages of preparation and building of the CENTA laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel P. Povinec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povinec, P.P., Masarik, J., Ješkovský, M. et al. Recent results from the AMS/IBA laboratory at the Comenius University in Bratislava: preparation of targets and optimization of ion sources. J Radioanal Nucl Chem 307, 2101–2108 (2016). https://doi.org/10.1007/s10967-015-4406-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4406-9

Keywords

Navigation