Skip to main content
Log in

Low-level gamma-ray spectrometry for environmental samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Low-level gamma-ray spectrometry with large volume HPGe detectors has been widely used in analysis of environmental radionuclides. The reasons are excellent energy resolution and high efficiency that permits selective and non-destructive analyses of several radionuclides in composite samples. Although the most effective way of increasing the sensitivity of a gamma-ray spectrometer is to increase counting efficiency and the amount of the sample, very often the only possible way is to decrease the detector’s background. The typical background components of a low-level HPGe detector, not situated deep underground, are cosmic radiation (cosmic muons, neutrons and activation products), radioactivity of construction materials, radon and its progenies. A review of Monte Carlo simulations of background components of HPGe detectors, and their characteristics in coincidence and anti-Compton mode of operation are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Heusser, in: Low-Level Measurements of Radioactivity in the Environment, M. Garcia-Leon, R. Garcia-Tenorio (Eds), World Scientific, Singapore, 1994, p. 69.

    Google Scholar 

  2. P. P. Povinec, in: Low-level Measurements of Radioactivity in the Environment, M. Garcia-Leon, M. Garcia-Tenorio (Eds), World Scientific, Singapore, 1994, p. 113.

    Google Scholar 

  3. P. Vojtyla, J. Beer, P. Štavina, Nucl. Instr. Meth., B86 (1994) 380.

    Google Scholar 

  4. G. Heusser, Ann. Rev. Nucl. Part. Sci., 45 (1995) 543.

    Article  CAS  Google Scholar 

  5. S. Niese, M. Koehler, B. Gleisberg, J. Radioanal. Nucl. Chem., 233 (1998) 167.

    Article  CAS  Google Scholar 

  6. H. Neder, G. Heusser, M. Laubenstein, Appl. Radiation Isotopes, 53 (2000) 191.

    Article  CAS  Google Scholar 

  7. S. Neumaier, D. Arnold, J. Boehm, E. Funck, Appl. Radiation Isotopes, 53 (2000) 173.

    Article  CAS  Google Scholar 

  8. P. Vojtyla, P. P. Povinec, Appl. Radiation Isotopes, 53 (2000) 185.

    Article  CAS  Google Scholar 

  9. T. M. Semkow, P. P. Parekh, C. D. Schwenker, A. J. Khan, A. Bari, J. F. Colaresi, O. K. Tench, G. David, W. Guryn, Appl. Radiation Isotopes, 57 (2002) 213.

    Article  CAS  Google Scholar 

  10. P. P. Povinec, in: Marine Radioactivity, H. D. Livingston (Ed.), Elsevier, Amsterdam, 2004, p. 237.

    Google Scholar 

  11. P. P. Povinec, J.-F. Comanducci, I. Levy-Palomo, Appl. Radiation Isotopes, 61 (2004) 85.

    Article  CAS  Google Scholar 

  12. P. P. Povinec, J. Radioanal. Nucl. Chem., 261 (2005) 413.

    Google Scholar 

  13. P. Theodorsson, Measurement of Weak Radioactivity, World Scientific, Singapore, 1996, p. 333.

    Google Scholar 

  14. M. Laubenstein, M. Hult, J. Gasparo, D. Arnold, S. Neumaier, G. Heusser, M. Koehler, P. P. Povinec, J.-L. Reyss, M. Schwaiger, P. Theodorsson, Appl. Radiation Isotopes, 61 (2004) 167.

    Article  CAS  Google Scholar 

  15. M. Hult, M. J. Martinez Canet, M. Koehler, J. Das Neves, P. N. Johnston, Appl. Radiation Isotopes, 53 (2000) 225.

    Article  CAS  Google Scholar 

  16. K. Komura, Y. Hamajima, Appl. Radiation Isotopes, 61 (2004) 185.

    Article  CAS  Google Scholar 

  17. S. Pagava, A. A. Burchuladze, T. Robakidze, L. Rusetski, D. Tsintsadze, P. P. Povinec, M. Chudy, J. Stanicek, in: Rare Nuclear Processes, P. P. Povinec (Ed.), World Scientific, Singapore, 1992, p. 300.

    Google Scholar 

  18. G. Heusser, M. Laubenstein, H. Neder, in: Radionuclides in the Environment, P. P. Povinec, J. A. Sanchez-Cabeza (Eds), Elsevier, Amsterdam, 2006, p. 495.

    Chapter  Google Scholar 

  19. K. Debertin, R. G. Helmer, Gamma and X-Ray Spectrometry with Semiconductor Detectors, Elsevier, Amsterdam, 1998.

    Google Scholar 

  20. P. P. Povinec, Isotopenpraxis, 18 (1982) 423.

    CAS  Google Scholar 

  21. I. Zvara, P. Povinec, I. Sykora, Pure Appl. Chem., 66 (1994) 2537.

    Article  CAS  Google Scholar 

  22. CERN, GEANT Detector Description and Simulation Tool, CERN Program Library Office, CERN, Geneva, 1990.

    Google Scholar 

  23. P. Vojtyla, Nucl. Instr. Meth., B100 (1995) 87.

    Google Scholar 

  24. P. Vojtyla, Nucl. Instr. Meth., B111 (1996) 163.

    Google Scholar 

  25. P. Vojtyla, P. P. Povinec, in: Radionuclides in the Environment, P. P. Povinec, J. A. Sanchez-Cabeza (Eds), Elsevier, Amsterdam, 2006, p. 529.

    Chapter  Google Scholar 

  26. J. Stanicek, P. P. Povinec, Nucl. Instr. Meth., B17 (1986) 462.

    CAS  Google Scholar 

  27. P. P. Povinec, J.-F. Comanducci, I. Levy-Palomo, F. Avaullee, in: Radionuclides in the Environment, P. P. Povinec, J. A. Sanchez-Cabeza (Eds), Elsevier, Amsterdam, 2006, p. 538.

    Chapter  Google Scholar 

  28. I. Sykora, P. P. Povinec, Nucl. Instr. Meth., B17 (1986) 467.

    CAS  Google Scholar 

  29. V. Hlinka, S. Usacev, P. P. Povinec, M. Chudy, Acta Univ. Comen. Phys., 18 (1977) 109.

    CAS  Google Scholar 

  30. I. Sykora, P. P. Povinec, Acta Physica Univ. Comen., 31 (1990) 83.

    CAS  Google Scholar 

  31. I. Sykora, M. Durcik, J. Stanicek, P. P. Povinec, in: Rare Nuclear Processes, P. P. Povinec (Ed.), World Scientific, Singapore, 1992, p. 321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Povinec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povinec, P.P. Low-level gamma-ray spectrometry for environmental samples. J Radioanal Nucl Chem 276, 771–777 (2008). https://doi.org/10.1007/s10967-008-0631-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-008-0631-9

Keywords

Navigation