Skip to main content
Log in

Production of stable silicon and germanium isotopes via their enriched volatile compounds

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The paper considers two main approaches discussed in literature for conversion of gaseous fluorides SiF4, GeF4 and hydrogen-containing compound of germanium, i.e., GeH4, isotopic enriched by centrifugal method, into target products—stable isotopes of silicon and germanium in the form of bulk polycrystals and thin layers. In the first two-step (chemical) approach the fluorides are converted into intermediate compounds which are further subjected either to pyrolysis or to reduction by hydrogen. In the second single-step (plasma-chemical) approach the gaseous fluorides are reduced by hydrogen in plasma sustained by the discharges of different types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geballe TH, Hull GW (1958) Phys Rev 110:773–775

    Article  CAS  Google Scholar 

  2. Feher G, Gordon JP (1958) Phys Rev 109:221–222

    Article  CAS  Google Scholar 

  3. Haller EE (1995) Appl Phys Rev 77:2857–2878

    Article  CAS  Google Scholar 

  4. Itoh KM (2001) Physica E 10:463–466

    Article  CAS  Google Scholar 

  5. Cardona M, Thewalt MLW (2005) Rev Mod Phys 75:1173–1224

    Article  Google Scholar 

  6. Ager JW III, Haller E (2006) Phys Stat Solids A203:3550–3558

    Article  Google Scholar 

  7. Becker P, Pohl H-J, Riemann H, Abrosimov N (2010) Phys Stat Solids A207:49–66

    Article  Google Scholar 

  8. Churbanov MF, Gusev AV, Bulanov AD, Potapov AM (2013) Russ Chem Bull 62:270–275

    Article  CAS  Google Scholar 

  9. Zwanenburg FA, Dzurak S, Morello A, Simmons MY, Hollenberg LCL, Klimeck G, Rogge S, Coppersmith SN, Eriksson MA (2013) Rev Mod Phys 85:961–1019

    Article  CAS  Google Scholar 

  10. Itoh KM, Watanabe H (2014) MRS Commun 4:143–157

    Article  CAS  Google Scholar 

  11. Agostini M, Allardt M, Andreotti E (2015) Eur Phys J C 75:39

    Article  Google Scholar 

  12. Roberts WL (1989) Nucl Instrum Methods Phys A282:271–276

    Article  CAS  Google Scholar 

  13. Tikhomirov A (1992) Nucl Instrum Methods Phys B70:1–4

    Article  CAS  Google Scholar 

  14. Becker P, Bettin H, De Bievre P, Holm C, Kuetgens U, Spieweck F, Stuempel J, Valkiers S, Zulehner W (1995) IEEE Trans Instrum Meas 44:522–525

    Article  CAS  Google Scholar 

  15. Takyu K-I, Itoh KM, Oka K, Saito N, Ozhogin VI (1999) Jpn J Appl Phys 38:L1493–L1495

    Article  CAS  Google Scholar 

  16. Korolev VA, Mashirov LG, Perepech KV, Polyakov MS, Shilnikov AYU, Godisov ON, Kaliteevskii AK, Ber BYA, Kovarskii AP (2002) Inorg Mater 38:539–541

    Article  CAS  Google Scholar 

  17. Godisov ON, Kaliteevskii AK, Korolev VA, Ber BYA, Davydov VYU, Kaliteevskii MA, Kop’ev PS (2001) Phys Technol Semicond 35:877–879

    Article  CAS  Google Scholar 

  18. Abrosimov NA, Riemann H, Schroeder W, Pohl H-J, Kaliteevskii AK, Godisov ON, Korolev VI, Zhilnikov AYU (2003) Cryst Res Technol 38:654–658

    Article  CAS  Google Scholar 

  19. Bulanov AD, Devyatykh GG, Gusev AV, Sennikov PG, Pohl H-J, Riemann H, Schilling H, Becker P (2000) Cryst Res Technol 35:1023–1026

    Article  CAS  Google Scholar 

  20. Devyatykh GG, Bulanov AD, Gusev AV, Kovalev ID, Krylov VA, Potapov AM, Sennikov PG, Adamchik SA, Gavva VA, Kotkov AP, Churbanov MF, Dianov EM, Kaliteevskii AK, Godisov ON, Pohl H-J, Becker P, Riemann H, Abrosimov N (2008) Dokl Chem Part I 421:157–160

    Article  CAS  Google Scholar 

  21. Loginov AV, Garbar AM (1990) High-Purity Subst 3:747–755

    Google Scholar 

  22. Krylov VA, Sennikov PG, Chernova OYU, Sorochkina TG, Sozin AYU, Chuprov LA, Adamchik SA, Kotkov AP (2008) Inorg Mater 44:766–772

    Article  CAS  Google Scholar 

  23. Ager JW III, Beeman JW, Hansen WL, Haller EE, Sharp ID, Liao C, Yang A, Thewalt MLW, Riemann H (2005) J Electrochem Soc 152:G448–G451

    Article  CAS  Google Scholar 

  24. Itoh K, Hansen WL, Haller EE, Farmer JW, Ozhogin VI, Rudnev A, Tikhomirov A (1993) J Mater Res 8:1341–1347

    Article  CAS  Google Scholar 

  25. Hu MY, Sinn H, Atalas A, Sturhahn W, Alp EE, Wille H-C, Shvyd’ko YUV, Sutter JP, Bandaru J, Haller EE, Ozhogin VI, Rodriguez R, Corella R, Kartheuser E, Villerett MA (2003) Phys Rev B 67:113306

    Article  Google Scholar 

  26. Klapdor-Kleingrothaus HV (2005) Nuclear Physics (Proc.Suppl) 143B:229–232

  27. Arefyev DG, Vassin SA, Dolgov SG, Zyryanov SM, Luzkii VA, Skorynin GM, Timofeev MG, Sharin GA, Filimonov SV, Bulanov AD, Churbanov MF (2010) Perspekt Mater (Adv Mater) 8:19–24 [in Russian]

    Google Scholar 

  28. Gusev AV, Bulanov AD, Filimonov SV, Zyryanov SM, Arefyev DG, Churbanov MF, Andryushenko IA, Potapov AM, Gavva VA, Adamchik SA (2011) Perspekt Mater (Adv Mater) 10:17 [in Russian]

    Google Scholar 

  29. Adamchik SA, Bulanov AD, Churbanov MF, Troshin OYU, Lashkov AYU, Gusev AV, Lipskii VA (2014) Dokl Chem Part II 458:185–188

    Article  CAS  Google Scholar 

  30. Kut’in AM, Polyakov VS, Sennikov PG (2008) 5th international conference “Silicon 2008”, Chernogolovra. Book of abstracts:178

  31. Boone JE, Richards DM, Bossier III DM (1991) Patent 5075092 US

  32. Djeridane Y, Abramov A, i Cabarrocas PR (2007) Thin Solid Films 515:7451–7454

    Article  CAS  Google Scholar 

  33. Kumar S, Brenot R, Kalache B, Tripathi V, Vanderhagen R, Drevillion B, i Cabarrocas PR (2001) Solid State Phenom 80–81:237–240

    Article  Google Scholar 

  34. Bruno G, Capezzuto P, Cicala G (1991) J Appl Phys 69(10):7256

    Article  CAS  Google Scholar 

  35. Tumanov YuN (2003) Plasma and high-frequency processes for obtaining and processing materials in the nuclear fuel cycle: present and future. Fizmatlit, Moscow

    Google Scholar 

  36. Tichomolov YUV, Afonin YUG, Shulshenko NA, Zainchkovskii SV, Koshelev SM (1996) Patent. 2066296 Russian Federation

  37. Nagano M, Mriya T, Takehiro T, Nobuyuki M, Fumiteru Y (2004) Patent 0250764 A1 USA

  38. Sennikov PG, Golubev SV, Shashkin VI, Ptyakhin DA, Andreev BA, Drozdov YUN, Kuznetsov AS, Pohl H-J (2009) Semiconductors 43:968

    Article  CAS  Google Scholar 

  39. Sennikov PG, Golubev SV, Shashkin VI, Pryakhin DA, Drozdov MN, Andreev BA, Pohl H-J, Godisov ON (2009) JETP Lett 89:73–75

    Article  CAS  Google Scholar 

  40. Sennikov PG, Golubev SV, Kornev RA, Mochalov LA, Shilaev AA (2014) High Energy Chem 48:49–53

    Article  CAS  Google Scholar 

  41. Mutsukura N, Ohuchi M, Satoh S, Machi Y (1983) Thin Solid Films 10:47–57

    Article  Google Scholar 

  42. Sennikov P, Pryakhin D, Andreev B, Gavrilenko L, Drozdov Yu, Drozdov M, Pohl H-J, Shashkin V (2010) Cryst. Res Technol 45:983–987

    Article  CAS  Google Scholar 

  43. Sennikov PG, Pryakhin DA, Abrosimov NV, Andreev B, Drozdov YU, Drozdov M, Kuznetsov A, Murel A, Pohl H-J, Riemann H, Shashkin V (2010) Cryst Res Technol 45:899–908

    Article  CAS  Google Scholar 

  44. Vodopyanov VA, Golubev SV, Mansfeld DA, Sennikov PG, Drozdov YUN (2011) Rev Sci Instrum 82:063503

    Article  CAS  Google Scholar 

  45. Mansfeld DA, Vodopyanov VA, Golubev SV, Sennikov PG, Mochalov LA, Andreev BA, Drozdov YUN, Drozdov MN, Shashkin VI, Bulkin P, I Cabarrocas PR (2014) Thin Solid Films 552:46–49

    Article  Google Scholar 

  46. Sennikov PG, Vodopyanov VA, Golubev SV, Mansfeld DA, Drozdov MN, Drozdov YUN, Gavrilenko LV, Pryakhin DA, Shashkin VI, Godisov ON, Glasunov AI, Safonov AYu, Pohl HJ, Thewalt MLW, Becker P, Riemann H, Abrosimov NV, Valkiers S (2012) Solid State Commun 152:455–457

    Article  CAS  Google Scholar 

  47. Sennikov PG, Golubev SV, Kornev RA, Mochalov LA, Kossyi IA, Davydov AM (2012) In: YuA Lebedev (ed) Proceedings of VIII International workshop”Microwave discharges: fundamentals and applications. Zvenigorod. September 10–14, 2012 Yanus-K, Moscow, 243–248

  48. Sennikov PG, Kornev RA, Mochalov LA, Golubev SV (2014) J Phys 514:012002–012008

    Google Scholar 

  49. Shigeru Saito and Kinich Obi (1993) J Appl Phys 74(3):1480

    Article  Google Scholar 

  50. Andreev BA, Gavrilenko LV, Drozdov YUN, Yunin PA, Pryakhin DA, Mochalov LA, Sennikov PG, Bulkin P, I Cabarrocas PR (2014) Thin Solid Films 552:46–49

    Article  CAS  Google Scholar 

  51. Sennikov PG, Kornev RA, Mochalov LA et al (2013) Perspekt Mater (Adv Mater) 14:212 [in Russian]

    Google Scholar 

Download references

Acknowledgments

The work was supported by Russian Foundation for Basic Research (Project No 15-43-02308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr G. Sennikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sennikov, P.G., Kornev, R.A. & Abrosimov, N.V. Production of stable silicon and germanium isotopes via their enriched volatile compounds. J Radioanal Nucl Chem 306, 21–30 (2015). https://doi.org/10.1007/s10967-015-4192-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4192-4

Keywords

Navigation