Skip to main content

Ion Beam Synthesis of Germanium Nanocrystals—A Fluence Dependence Study

  • Conference paper
  • First Online:
Advanced Nanomaterials and Their Applications (ICANA 2022)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 22))

  • 123 Accesses

Abstract

The synthesis of Ge nanocrystals (NCs) by using ion implantation method is reported here along with the results from different spectroscopic and microscopic characterizations such as Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), and atomic force microscopy (AFM). Various fluences of 1 MeV Ge ions have been implanted into SiO2, and then, as-implanted samples were annealed using rapid thermal annealing system for the synthesis of Ge NCs. The Ge NCs presence was confirmed from Raman spectroscopy and XRD measurements. The low-fluence implanted sample did not show any signature of Ge NCs, whereas Ge NCs presence has been observed in the high-fluence implanted sample after annealing. The mechanism of Ge NCs formation in the as-implanted samples after annealing has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi WK, Chim WK, Heng CL, Teo LW, Ho V, Ng V, Antoniadis DA, Fitzgerald EA (2002) Appl Phys Lett 80:2014

    Article  CAS  Google Scholar 

  2. Lim KY, Kim MC, Hong SH, Choi S, Kim KJ (2010) J Appl Phys 108:033708

    Google Scholar 

  3. Das K, Goswami MN, Mahapatra R, Kar GS, Dhar A, Acharya HN, Maikap S, Lee J-H, Ray SK (2004) Appl Phys Lett 84:1386

    Article  CAS  Google Scholar 

  4. Leong WL, Lee PS, Mhaisalkar SG (2007) Appl Phys Lett 90:042906

    Article  Google Scholar 

  5. Ray SK, Maikap S, Banerjee W, Das S (2013) J Phys D: Appl Phys 46:153001

    Article  Google Scholar 

  6. Cosentino S, Mirabella S, Liu P, Le ST, Miritello M, Lee S, Crupi I, Nicotra G, Spinella C, Paine D, Terrasi A, Zaslavsky A, Pacifici D (2013) Thin Solid Films 548:551–555

    Google Scholar 

  7. Hong SH, Kim MC, Jeong PS, Choi S, Kim Y, Kim KJ (2008) Appl Phys Lett 92:093124

    Article  Google Scholar 

  8. Park CJ, Cho KH, Yang WC, Cho HY, Choi SH, Elliman RG et al (2006) Appl Phys Lett 88:071916

    Article  Google Scholar 

  9. Colace L, Masini G, Assanto G, Luan HC, Wada K, Kimerling LC (2000) Appl Phys Lett 76:1231

    Article  CAS  Google Scholar 

  10. Carolan D (2017) Prog Mater Sci 90:128–158

    Article  CAS  Google Scholar 

  11. Maeda Y (1995) Phys Rev B 5:1658

    Article  Google Scholar 

  12. Baranwal V, Gerlach JW, Lotnyk A, Rauschenbach B, Karl H, Ojha S, Avasthi DK, Kanjilal D, Pandey AC (2015) J Appl Phys 118:134303

    Article  Google Scholar 

  13. Araujo LL, Giulian R, Sprouster DJ, Schnohr CS, Llewellyn DJ, Johannessen B, Byrne AP, Ridgway MC (2012) Phys Rev B 85:235417

    Article  Google Scholar 

  14. Saikiran V, Srinivasa Rao N, Devaraju G, Chang GS, Pathak AP (2013) Nucl Inst Meth Phys Res Sect B 315:161–164

    Google Scholar 

  15. Volodin VA, Rui Z, Krivyakin GK, Antonenko AK, Stoffel M, Rinnert H, Vergnat M (2018) Semiconductors 52:1178–1187

    Article  CAS  Google Scholar 

  16. Lehninger D, Seidel P, Geyer M, Schneider F, Klemm V, Rafaja D, von Borany J, Heitmann J (2015) Appl Phys Lett 106:023116

    Article  Google Scholar 

  17. Vadavalli S, Valligatla S, Neelamraju B, Dar MH, Chiasera A, Ferrari M, Desai NR (2014) Front Phys 2:57

    Article  Google Scholar 

  18. Srinivasa Rao N, Pathak AP, Sathish N, Devaraju G, Saikiran V, Kulriya PK, Agarwal DC, Sai Saravanan G, Avasthi DK (2010) Solid State Commun 150:2122–2126

    Google Scholar 

  19. Kalimuthu V., Kumar P, Kumar M, Rath S (2018) Appl Phys A 124:712

    Google Scholar 

  20. Samavati A, Othaman Z, Ghosh SK, Dousti MR (2014) J Lumin 154:51–57

    Article  CAS  Google Scholar 

  21. Rao NS, Dhamodaran S, Pathak AP, Kulriya PK, Mishra YK, Singh F, Kabiraj D, Pivin JC, Avasthi DK (2007) Nucl Inst Meth Phys Res B 264:249–253

    Google Scholar 

  22. Choi WK, Ng V, Ng SP, Thio HH, Shen ZX, Li WS (1999) J Appl Phys 86:1398

    Article  CAS  Google Scholar 

  23. Campbell IH, Fauchet PM (1986) Solid State Commun 58:739–741

    Article  CAS  Google Scholar 

  24. Guha S, Wall M, Chase LL (1999) Nucl Inst Meth Phys Res Sect B 147:367–372

    Google Scholar 

  25. Ray SK, Das K (2005) Opt Mater 27:948–952

    Article  CAS  Google Scholar 

  26. Das K, Goswami MLN, Dhar A, Mathur BK, Ray SK (2007) Nanotechnology 18:175301

    Google Scholar 

  27. Ortiz MI, Rodriguez A, Sangrador J, Rodriguez T, Avella M, Jimenez J, Ballesteros C (2005) Nanotechnology 16:S197

    Article  CAS  Google Scholar 

  28. Witanachchi S, Wolf PJ (1994) J Appl Phys 76:2185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

VS acknowledges funding received from UGC and SERB through grants UGC-F.30-456/2018(BSR) and SERB-SRG/2019/001830. APP acknowledges National Academy of Sciences, Prayagraj for award of NASI Senior Scientist Platinum Jubilee Fellowship. We are thankful to UGC NRC Centre of School of Physics at UOHYD for extending Raman and XRD facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Saikiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saikiran, V., Neelima, G., Rao, N.S., Pathak, A.P. (2023). Ion Beam Synthesis of Germanium Nanocrystals—A Fluence Dependence Study. In: Rao, N.M., Lingamallu, G., Agarwal, M. (eds) Advanced Nanomaterials and Their Applications. ICANA 2022. Springer Proceedings in Materials, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-99-1616-0_1

Download citation

Publish with us

Policies and ethics